一种基于红外光谱仪同时获取材料温度及光谱方向发射率的测量方法

    公开(公告)号:CN110207829B

    公开(公告)日:2020-11-13

    申请号:CN201910463343.4

    申请日:2019-05-30

    Abstract: 本发明公开了一种基于红外光谱仪同时获取材料温度及光谱方向发射率的测量方法,包括:对光谱仪进行标定,得出光谱仪特征函数中的系数;将待测样片置于样片槽内,将样片加热至T1,通过光谱仪测量待测样片表面辐射得到曲线一;微调加热片使被测样片的测量温度发生小于5K的热响应变化;重复步骤二,此时被测样片温度为T2,通过光谱仪测量样片表面光谱辐射能量曲线二;选取两个特定的波长λ1和λ2,得到以下式子:利用全局最优算法解出T1和T2,得到不同时刻被测样片的真温和相对应波长的发射率。本发明是一种仅根据两组相差很小温度下的方向光谱辐射测量曲线同时获取材料光谱方向发射率与温度的新方法。

    一种利用温度扰动法测量固体材料高温连续光谱发射率的方法

    公开(公告)号:CN109211796A

    公开(公告)日:2019-01-15

    申请号:CN201811222704.8

    申请日:2018-10-19

    CPC classification number: G01N21/171 G01N21/255 G01N2021/1714

    Abstract: 一种利用温度扰动法测量固体材料高温连续光谱发射率的方法,涉及一种测量固体材料光谱发射率的方法。本发明是要解决现有的测量材料光谱发射率的方法需要设置参考黑体,且高温下试件温度不均匀、误差大,光路系统复杂的技术问题。本发明将样品放入高温炉中,启动高温炉和加热片均加热至温度为T0,测得辐射能量φλ0;保持高温炉的加热温度为T0,将加热片的温度升高至T1,测得辐射能量φλ1;保持加热片的加热温度为T1,同时将高温炉的温度升高至T1,测得辐射能量φλ2,光谱发射率 本发明不必设置参考黑体,试件温度均匀、误差小、没有复杂的光路系统,实现了1000K~2000K高温条件下固体材料连续光谱发射率的精确测量。

    一种利用温度扰动法测量固体材料高温连续光谱发射率的方法

    公开(公告)号:CN109211796B

    公开(公告)日:2020-11-27

    申请号:CN201811222704.8

    申请日:2018-10-19

    Abstract: 一种利用温度扰动法测量固体材料高温连续光谱发射率的方法,涉及一种测量固体材料光谱发射率的方法。本发明是要解决现有的测量材料光谱发射率的方法需要设置参考黑体,且高温下试件温度不均匀、误差大,光路系统复杂的技术问题。本发明将样品放入高温炉中,启动高温炉和加热片均加热至温度为T0,测得辐射能量φλ0;保持高温炉的加热温度为T0,将加热片的温度升高至T1,测得辐射能量φλ1;保持加热片的加热温度为T1,同时将高温炉的温度升高至T1,测得辐射能量φλ2,光谱发射率本发明不必设置参考黑体,试件温度均匀、误差小、没有复杂的光路系统,实现了1000K~2000K高温条件下固体材料连续光谱发射率的精确测量。

    一种基于红外光谱仪同时获取材料温度及光谱方向发射率的测量方法

    公开(公告)号:CN110207829A

    公开(公告)日:2019-09-06

    申请号:CN201910463343.4

    申请日:2019-05-30

    Abstract: 本发明公开了一种基于红外光谱仪同时获取材料温度及光谱方向发射率的测量方法,包括:步骤一:对光谱仪进行标定,得出光谱仪特征函数中的系数;步骤二:将待测样片置于样片槽内,将样片加热至T1,通过光谱仪测量待测样片表面辐射得到曲线一;步骤三;微调加热片使被测样片的测量温度发生小于5K的热响应变化;重复步骤二,此时被测样片温度为T2,通过光谱仪测量样片表面光谱辐射能量曲线二;步骤四:选取两个特定的波长λ1和λ2,得到以下式子:步骤五:利用全局最优算法解出 T1和T2,得到不同时刻被测样片的真温和相对应波长的发射率。本发明是一种仅根据两组相差很小温度下的方向光谱辐射测量曲线同时获取材料光谱方向发射率与温度的新方法。

Patent Agency Ranking