一种基于稀疏贝叶斯宽度学习的高铁轨道响应预测方法

    公开(公告)号:CN113297790A

    公开(公告)日:2021-08-24

    申请号:CN202110542901.3

    申请日:2021-05-19

    Abstract: 本发明提出一种基于稀疏贝叶斯宽度学习的高铁轨道响应预测方法,所述方法包括对输入的温度场变量进行线性和非线性特征提取、对隐含层神经元节点输出层权值的最大后验估计、结构响应输出结果的预测,并初步评估轨道结构状态等。本发明采用稀疏贝叶斯宽度学习方法对高铁轨道监测系统数据进行相关关系挖掘,通过对反映数据变量间关系的权值w的稀疏求解可以有效地避免回归预测的过拟合问题,并且具有较高的预测精度、高效的计算速度和宽松的设备硬件要求,从而能够实现对大量监测数据中隐含的温度荷载与结构应变相关关系的挖掘,通过及时发现监测数据模型的演变作为判别轨道结构服役状态异常的依据。

    一种多任务稀疏贝叶斯极限学习机回归方法

    公开(公告)号:CN111291898B

    公开(公告)日:2020-12-11

    申请号:CN202010097148.7

    申请日:2020-02-17

    Inventor: 黄永 李惠 高竞泽

    Abstract: 本发明提出一种多任务稀疏贝叶斯极限学习机回归方法,所述方法包括对于单隐含层神经网络的输入层至隐含层的随机特征提取、输出层权值的多任务稀疏建模及后验估计、多任务稀疏贝叶斯极限学习机参数和超参数快速优化估计等。本发明所述方法采用层次贝叶斯模型对极限学习机输出层权值进行多任务稀疏求解,在保证精度的前提下,裁剪了极限学习机的冗余隐含层神经元,得到了更为紧凑的神经网络,有效的避免了极限学习机的过拟合现象,并能使隐含层神经元个数无须预先确定。从稀疏贝叶斯学习的角度,前端的单隐含层神经网络可以使稀疏贝叶斯学习方法得以应用于非线性问题。

    一种基于稀疏贝叶斯宽度学习的高铁轨道响应预测方法

    公开(公告)号:CN113297790B

    公开(公告)日:2022-05-10

    申请号:CN202110542901.3

    申请日:2021-05-19

    Abstract: 本发明提出一种基于稀疏贝叶斯宽度学习的高铁轨道响应预测方法,所述方法包括对输入的温度场变量进行线性和非线性特征提取、对隐含层神经元节点输出层权值的最大后验估计、结构响应输出结果的预测,并初步评估轨道结构状态等。本发明采用稀疏贝叶斯宽度学习方法对高铁轨道监测系统数据进行相关关系挖掘,通过对反映数据变量间关系的权值w的稀疏求解可以有效地避免回归预测的过拟合问题,并且具有较高的预测精度、高效的计算速度和宽松的设备硬件要求,从而能够实现对大量监测数据中隐含的温度荷载与结构应变相关关系的挖掘,通过及时发现监测数据模型的演变作为判别轨道结构服役状态异常的依据。

    一种多任务稀疏贝叶斯极限学习机回归方法

    公开(公告)号:CN111291898A

    公开(公告)日:2020-06-16

    申请号:CN202010097148.7

    申请日:2020-02-17

    Inventor: 黄永 李惠 高竞泽

    Abstract: 本发明提出一种多任务稀疏贝叶斯极限学习机回归方法,所述方法包括对于单隐含层神经网络的输入层至隐含层的随机特征提取、输出层权值的多任务稀疏建模及后验估计、多任务稀疏贝叶斯极限学习机参数和超参数快速优化估计等。本发明所述方法采用层次贝叶斯模型对极限学习机输出层权值进行多任务稀疏求解,在保证精度的前提下,裁剪了极限学习机的冗余隐含层神经元,得到了更为紧凑的神经网络,有效的避免了极限学习机的过拟合现象,并能使隐含层神经元个数无须预先确定。从稀疏贝叶斯学习的角度,前端的单隐含层神经网络可以使稀疏贝叶斯学习方法得以应用于非线性问题。

Patent Agency Ranking