-
公开(公告)号:CN116566777B
公开(公告)日:2024-03-12
申请号:CN202310504648.1
申请日:2023-05-08
Applicant: 哈尔滨工程大学
IPC: H04L27/00 , H04B1/713 , G06N3/0464 , G06N3/042
Abstract: 本发明提出一种基于图卷积神经网络的跳频信号调制识别方法。所述方法包括以下步骤:步骤1:提取跳频信号的节点特征;步骤2:构建邻接矩阵和边,将跳频信号转换为无向拓扑图;步骤3:根据跳频信号图域转换数据构建图卷积神经网络GCN模型;步骤4:利用训练样本集合训练GCN模型,将测试样本输入训练好的GCN模型中输出识别结果。本发明提出的信号图域转换方法在降低节点和边的数量的基础上,提取多种节点特征,减少了参数和计算量且抗噪声性能好,构建的GCN模型可以获取受信噪比影响较小的空间结构信息,在保证了识别准确率的基础上网络层数少,实时性好。
-
公开(公告)号:CN116566777A
公开(公告)日:2023-08-08
申请号:CN202310504648.1
申请日:2023-05-08
Applicant: 哈尔滨工程大学
IPC: H04L27/00 , H04B1/713 , G06N3/0464 , G06N3/042
Abstract: 本发明提出一种基于图卷积神经网络的跳频信号调制识别方法。所述方法包括以下步骤:步骤1:提取跳频信号的节点特征;步骤2:构建邻接矩阵和边,将跳频信号转换为无向拓扑图;步骤3:根据跳频信号图域转换数据构建图卷积神经网络GCN模型;步骤4:利用训练样本集合训练GCN模型,将测试样本输入训练好的GCN模型中输出识别结果。本发明提出的信号图域转换方法在降低节点和边的数量的基础上,提取多种节点特征,减少了参数和计算量且抗噪声性能好,构建的GCN模型可以获取受信噪比影响较小的空间结构信息,在保证了识别准确率的基础上网络层数少,实时性好。
-