基于原型学习和联邦学习的物联网入侵检测方法及系统

    公开(公告)号:CN118199925A

    公开(公告)日:2024-06-14

    申请号:CN202410188565.0

    申请日:2024-02-20

    Abstract: 本发明公开了一种基于原型学习和联邦学习的物联网入侵检测方法及系统,属于入侵检测领域,通过将物联网的每个客户端本地神经网络模型划分为嵌入层和决策层,对客户端上的每个攻击类的所有潜在向量计算各自的聚类中心,将聚类中心作为对应攻击类在当前客户端上的本地原型并上传到中央服务器;再通过中央服务器生成全局原型并分发回对应的客户端;根据全局原型个性化训练客户端的本地神经网络模型,以便用来检测对本地物联网网络的攻击行为。本发明通过对齐不同物联网客户端本地原型的同时保持其本地模型一定程度的个性化,来增强每个客户端入侵检测能力。

Patent Agency Ranking