-
公开(公告)号:CN110674390B
公开(公告)日:2022-05-20
申请号:CN201910747703.3
申请日:2019-08-14
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06F16/9535 , G06F16/9536
Abstract: 本发明公开了一种基于置信度的群体发现方法及装置,所述方法包括:步骤1,设置群体的约束条件,基于所述约束条件生成群体的候选用户集及候选网络;步骤2,基于所述候选用户集及所述候选网络综合得到每个候选用户属于该群体的置信度;步骤3,根据所述候选用户的置信度,与预先设置的置信度阈值进行比较,发现新种子用户和新候选用户;步骤4,获取新种子用户,重复执行步骤1‑4直到达到预先设置的迭代次数。
-
公开(公告)号:CN110704612B
公开(公告)日:2022-09-16
申请号:CN201910732451.7
申请日:2019-08-09
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06F16/35 , G06F16/31 , G06F40/216 , G06F40/30 , G06Q50/00
Abstract: 本发明提出了一种社交群体发现方法、装置和存储介质,用以提高社交群体发现精度和准确度。所述社交群体发现方法,包括:利用预先设定的种子用户和约束条件,从通信数据源中查找候选用户,所述候选用户包括与所述种子用户通信的第一用户和/或满足所述约束条件的第二用户;从所述候选用户的通信数据中提取与所述种子用户关联的关联特征信息;根据提取的关联特征信息,确定每一候选用户对应的置信度;确定对应的置信度大于预设阈值的候选用户为目标用户;根据目标用户之间的通信联系建立初始群体网络;利用群体发现算法从所述初始群体网络中发现社交群体子网络。
-
公开(公告)号:CN110704612A
公开(公告)日:2020-01-17
申请号:CN201910732451.7
申请日:2019-08-09
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06F16/35 , G06F16/31 , G06F40/216 , G06F40/30 , G06Q50/00
Abstract: 本发明提出了一种社交群体发现方法、装置和存储介质,用以提高社交群体发现精度和准确度。所述社交群体发现方法,包括:利用预先设定的种子用户和约束条件,从通信数据源中查找候选用户,所述候选用户包括与所述种子用户通信的第一用户和/或满足所述约束条件的第二用户;从所述候选用户的通信数据中提取与所述种子用户关联的关联特征信息;根据提取的关联特征信息,确定每一候选用户对应的置信度;确定对应的置信度大于预设阈值的候选用户为目标用户;根据目标用户之间的通信联系建立初始群体网络;利用群体发现算法从所述初始群体网络中发现社交群体子网络。
-
公开(公告)号:CN110674390A
公开(公告)日:2020-01-10
申请号:CN201910747703.3
申请日:2019-08-14
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06F16/9535 , G06F16/9536
Abstract: 本发明公开了一种基于置信度的群体发现方法及装置,所述方法包括:步骤1,设置群体的约束条件,基于所述约束条件生成群体的候选用户集及候选网络;步骤2,基于所述候选用户集及所述候选网络综合得到每个候选用户属于该群体的置信度;步骤3,根据所述候选用户的置信度,与预先设置的置信度阈值进行比较,发现新种子用户和新候选用户;步骤4,获取新种子用户,重复执行步骤1-4直到达到预先设置的迭代次数。
-
公开(公告)号:CN118568487A
公开(公告)日:2024-08-30
申请号:CN202410548464.X
申请日:2024-05-06
Applicant: 国家计算机网络与信息安全管理中心 , 国家计算机网络与信息安全管理中心天津分中心 , 中国科学院自动化研究所
IPC: G06F18/214 , G06F18/25 , G06F18/2431 , G06N3/042
Abstract: 本申请实施例提供一种多模态轻量级动态知识增强方法、装置及存储介质,所述方法包括:基于图像小样本集的向量表征和文本小样本集的向量表征,以多模态视觉码书的形式构建图像小样本知识库和文本小样本知识库;基于单模态搜索的方式从所述图像小样本知识库或所述文本小样本知识库中确定待融合表征的跨模态表征,融合所述待融合表征和所述跨模态表征,得到知识增强后的融合表征。本申请实施例提供的多模态轻量级动态知识增强方法、装置及存储介质,在现有大规模预训练多模态模型的强大表征学习基础上,融合罕见且细粒度的跨模态表征信息,以此提高原始表征的质量,并显著提升对特定信息的检索效率。
-
公开(公告)号:CN116127964A
公开(公告)日:2023-05-16
申请号:CN202211600947.7
申请日:2022-12-13
Applicant: 国家计算机网络与信息安全管理中心 , 北京中科闻歌科技股份有限公司 , 国家计算机网络与信息安全管理中心天津分中心
IPC: G06F40/284 , G06F40/30 , G06F16/35 , H04L9/40 , H04W12/12
Abstract: 本发明公开了一种融合传播关系的诈骗信息的检测方法。该方法包括:获取第一信息组、诈骗账号库以及正常账号库,其中第一信息组中的每一个信息包括文本信息和发信账号;根据诈骗账号库和正常账号库从第一信息组中确定第二信息组,其中第二信息组中的每一个信息的发信账号在诈骗账号库和正常账号库中都不存在;根据第二信息组得到多个目标信息组,其中每一个目标信息组中的第一发信账号与第二发信账号的相似文本信息的数量大于第一阈值;计算每一个目标信息组的诈骗权重值;在目标信息组的诈骗权重值大于第二阈值的情况下,将目标信息组中的每一个文本信息确定为诈骗信息。本发明解决了对大量诈骗信息进行检测时,处理效率低的技术问题。
-
公开(公告)号:CN119598054A
公开(公告)日:2025-03-11
申请号:CN202510143768.2
申请日:2025-02-10
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/958 , G06V30/19
Abstract: 本发明涉及人工智能技术领域,提供一种网站类型识别方法、装置、电子设备和存储介质,其中方法包括:获取待识别网站的网址,并基于所述待识别网站的网址,获取所述待识别网站内所有的待分类图像;基于特征提取模型,对各待分类图像进行特征提取,得到所述各待分类图像的图像特征;基于文本特征库中的各文本特征和所述各待分类图像的图像特征,确定所述各待分类图像的类别;基于所述各待分类图像的类别,确定所述待识别网站的类型。本发明通过结合图像特征和文本特征,实现了基于图像和文本描述的多模态特征的检索式分类判断,可以有效提高网站类型识别的准确率。
-
公开(公告)号:CN118520929B
公开(公告)日:2024-10-29
申请号:CN202411003497.2
申请日:2024-07-25
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06N3/09 , G06N3/0455 , G06F40/194
Abstract: 本发明提供一种文本相似度确定模型的训练方法及文本相似度计算方法,属于计算机技术领域,该训练方法包括:获取第一数据集和第二数据集;第一数据集中包括至少一个短文本数据对;第二数据集中包括至少一个目标文本数据对,目标文本数据对中的两个目标文本数据至少一个为长文本数据;基于句向量对比模型,获取第二数据集中各目标文本数据的关键表述;句向量对比模型是基于第一数据集和第一损失函数对第一预训练模型训练得到的;基于各关键表述和第二损失函数,对第二预训练模型进行训练,得到文本相似性确定模型。通过在判定过程中引入短文本和长文本,提升了文本相似度确定模型输出结果的准确性。
-
公开(公告)号:CN115080871B
公开(公告)日:2024-05-17
申请号:CN202210847062.0
申请日:2022-07-07
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9536 , G06F16/901 , G06N3/0464 , G06N3/042 , G06N3/045 , G06N3/08 , G06Q50/00
Abstract: 本发明公开了一种跨社交网络社交用户对齐方法,涉及社交网络的用户关系挖掘领域。本发明为了解决现有社交用户对齐方法不能跨社交网络、计算精度低、对齐效率低的缺陷,采用如下步骤实现:采集社交网络的用户属性信息,构建用户关系拓扑图;根据边权重和节点的出入度计算节点权重;构建一阶近邻关系模型和二阶近邻关系模型,确定一阶邻居节点和二阶邻居节点,得到用户节点之间的相互关系;构建社交对齐神经网络,通过社交对齐神经网络对用户关系拓扑图中各节点进行邻居节点的信息聚合、拼接与非线性变换,得到跨社交网络的社交用户身份对齐结果。本发明主要用于通过跨社交网络对其社交用户实现用户关系挖掘。
-
公开(公告)号:CN117251524A
公开(公告)日:2023-12-19
申请号:CN202310446513.4
申请日:2023-04-24
Applicant: 国家计算机网络与信息安全管理中心 , 讯飞智元信息科技有限公司
IPC: G06F16/33 , G06F16/35 , G06F40/289 , G06F40/30 , G06F18/2431 , G06F18/2415 , G06F18/214 , G06N3/0455 , G06N3/0464 , G06N3/047 , G06N3/084
Abstract: 本发明公开了一种基于多策略融合的短文本分类方法,属于自然语言处理领域,主要涉及深度神经网络、数据增强以及文本分类。该方法包括如下步骤:通过数据预处理剔除噪声数据、基于词性标注关键词进行分类,基于数据增强的文本分类,最终通过多策略融合设置相应的阈值门限获取网络短文本数据标签。本发明通过提出一种基于多策略融合的短文本分类的解决方法,从而提升短文本数据分类的效果,进而提升业务人员发现相关短文本数据精准度和业务效率。
-
-
-
-
-
-
-
-
-