一种减少换相失败的统一潮流控制器无功补偿方法

    公开(公告)号:CN105958504B

    公开(公告)日:2018-06-19

    申请号:CN201610289722.2

    申请日:2016-05-04

    IPC分类号: H02J3/18 H02J3/36

    CPC分类号: Y02E40/18 Y02E60/60

    摘要: 本发明公开一种减少换相失败的统一潮流控制器无功补偿方法,步骤包括:搭建详细电网模型,然后在各种典型故障下分别进行暂态仿真,分别计算逆变侧换流站熄弧角和换流站交流母线电压,根据会导致换相失败发生的条件,确定熄弧角和换流母线电压的约束极限,并确定当前电网会导致换相失败的故障集;然后提高并联侧补偿参考值,并确定是否超过调节极限;再确定新的故障集,判断故障集是否为空,最后得到应用于实际电网的UPFC无功补偿方案。本发明通过对当前电网进行仿真控制确定合适的UPFC补偿方案,能够覆盖各类故障,减小交流电网故障后对特高压直流的影响,减少可能导致换相失败的故障线路,从而提高特高压直流接入的电网安全性和稳定性。

    一种含统一潮流控制器的线性化最优潮流模型

    公开(公告)号:CN106684857B

    公开(公告)日:2018-02-09

    申请号:CN201610802200.8

    申请日:2016-09-05

    IPC分类号: H02J3/00 H02J3/06

    摘要: 本发明公布了一种含统一潮流控制器UPFC的线性化最优潮流LOPF模型。直流最优潮流DCOPF是目前最热门的OPF线性化方法,其求解速度快,但是计算精度相对较低,且无法求解节点电压幅值和线路无功功率两个电气量。UPFC可以提升地区电网的供电能力,将其引入DCOPF模型则增加了问题复杂度,还将线性化的DCOPF转化成了非线性模型。基于此,本发明提出了一种精度更高的且更加完善的新型LOPF模型,该模型可以求解电压和无功功率;并对UPFC的电流源型稳态模型进行处理,使其等效嵌入到线路中,从而适用于本发明所提LOPF模型。算例仿真结果表明,本发明保留了线性化模型的高效性,计算结果具有较高的精度,且能够求解出比DCOPF模型更加完备的潮流信息。

    一种减少换相失败的统一潮流控制器无功补偿方法

    公开(公告)号:CN105958504A

    公开(公告)日:2016-09-21

    申请号:CN201610289722.2

    申请日:2016-05-04

    IPC分类号: H02J3/18 H02J3/36

    摘要: 本发明公开一种减少换相失败的统一潮流控制器无功补偿方法,步骤包括:搭建详细电网模型,然后在各种典型故障下分别进行暂态仿真,分别计算逆变侧换流站熄弧角和换流站交流母线电压,根据会导致换相失败发生的条件,确定熄弧角和换流母线电压的约束极限,并确定当前电网会导致换相失败的故障集;然后提高并联侧补偿参考值,并确定是否超过调节极限;再确定新的故障集,判断故障集是否为空,最后得到应用于实际电网的UPFC无功补偿方案。本发明通过对当前电网进行仿真控制确定合适的UPFC补偿方案,能够覆盖各类故障,减小交流电网故障后对特高压直流的影响,减少可能导致换相失败的故障线路,从而提高特高压直流接入的电网安全性和稳定性。

    一种含统一潮流控制器的线性化最优潮流模型

    公开(公告)号:CN106684857A

    公开(公告)日:2017-05-17

    申请号:CN201610802200.8

    申请日:2016-09-05

    IPC分类号: H02J3/00 H02J3/06

    摘要: 本发明公布了一种含统一潮流控制器UPFC的线性化最优潮流LOPF模型。直流最优潮流DCOPF是目前最热门的OPF线性化方法,其求解速度快,但是计算精度相对较低,且无法求解节点电压幅值和线路无功功率两个电气量。UPFC可以提升地区电网的供电能力,将其引入DCOPF模型则增加了问题复杂度,还将线性化的DCOPF转化成了非线性模型。基于此,本发明提出了一种精度更高的且更加完善的新型LOPF模型,该模型可以求解电压和无功功率;并对UPFC的电流源型稳态模型进行处理,使其等效嵌入到线路中,从而适用于本发明所提LOPF模型。算例仿真结果表明,本发明保留了线性化模型的高效性,计算结果具有较高的精度,且能够求解出比DCOPF模型更加完备的潮流信息。