-
公开(公告)号:CN114492974B
公开(公告)日:2024-08-06
申请号:CN202210055049.1
申请日:2022-01-18
申请人: 国网浙江省电力有限公司电力科学研究院 , 上海交通大学
IPC分类号: G06Q10/04 , G06Q10/067 , G06Q50/06 , G06F30/27 , G06F18/214 , G06N3/0442 , G06N3/0455 , G06N3/08
摘要: 本发明公开了一种GIS气体状态预测方法及系统。本发明的预测方法包括:数据预处理;建立以GRU为基本单元的Seq2Seq时序预测模型;Seq2Seq时序预测模型采用注意力机制自动提取输入时间序列关键时间点并分配相应权重,并计算当前时刻对应编码器输出的特征向量;在训练阶段采用线性衰减Scheduled Sampling算法;在测试阶段则采用Teacher Forcing算法;训练过程中损失函数取L1 Loss,经过1000次迭代后所得Seq2Seq时序预测模型对未来一段时间内GIS气体状态进行预测。本发明使Seq2Seq时序预测模型在实际测试时具有较高的容错性能,提升了Seq2Seq时序预测模型的预测精度。
-
公开(公告)号:CN114492974A
公开(公告)日:2022-05-13
申请号:CN202210055049.1
申请日:2022-01-18
申请人: 国网浙江省电力有限公司电力科学研究院 , 上海交通大学
摘要: 本发明公开了一种GIS气体状态预测方法及系统。本发明的预测方法包括:数据预处理;建立以GRU为基本单元的Seq2Seq时序预测模型;Seq2Seq时序预测模型采用注意力机制自动提取输入时间序列关键时间点并分配相应权重,并计算当前时刻对应编码器输出的特征向量;在训练阶段采用线性衰减Scheduled Sampling算法;在测试阶段则采用Teacher Forcing算法;训练过程中损失函数取L1 Loss,经过1000次迭代后所得Seq2Seq时序预测模型对未来一段时间内GIS气体状态进行预测。本发明使Seq2Seq时序预测模型在实际测试时具有较高的容错性能,提升了Seq2Seq时序预测模型的预测精度。
-
公开(公告)号:CN113791318A
公开(公告)日:2021-12-14
申请号:CN202111029182.1
申请日:2021-09-01
申请人: 上海交通大学 , 国网浙江省电力有限公司电力科学研究院
IPC分类号: G01R31/12
摘要: 本发明公开了一种基于多光谱检测阵列的局部放电故障识别方法,其包括步骤:(1)采用多光谱检测阵列传感器检测和采集气体绝缘电力设备的局部放电信号在不同波段下的光辐射强度;(2)持续检测和采集一段时间后,对应于各波段,对采集的所有局部放电光辐射强度求平均值,将该平均值作为相应波段的局部放电光辐射强度;(3)对各波段的局部放电光辐射强度进行归一化处理,将归一化处理后的各波段的局部放电光辐射强度作为局部放电多光谱特征;(4)采用高斯混合模型对输入的局部放电多光谱特征进行聚类分析,得到其对应的缺陷类别。相应地,本发明还公开了一种基于多光谱检测阵列的局部放电故障识别系统,其可以实施上述局部放电故障识别方法。
-
公开(公告)号:CN110334865B
公开(公告)日:2023-04-18
申请号:CN201910602682.6
申请日:2019-07-05
申请人: 上海交通大学 , 上海交通大学烟台信息技术研究院
IPC分类号: G06Q10/04 , G06Q10/0635 , G06Q10/20 , G06Q50/06 , G06F18/243 , G06F18/2415 , G06F18/214 , G06N3/045 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/084
摘要: 本发明公开了一种基于卷积神经网络的电力设备故障率预测方法,其包括训练步骤和预测步骤,其中,训练步骤包括:(1)收集电力设备的案例PRPS图谱;(2)对收集的案例PRPS图谱数据进行预处理;(3)构建第一卷积神经网络模块,并对第一卷积神经网络模块进行训练,以使其输出为案例PRPS图谱数据对应的缺陷类型;(4)基于缺陷类型构建各个缺陷类型的数据集;(5)对应各个缺陷类型分别构建各自的故障二分类子模块,其中每一个故障二分类子模块均基于第二卷积神经网络模块而构建;训练第二卷积神经网络,以使各故障二分类子模块基于案例PRPS图谱数据所得到发生故障的概率值,而输出电力设备是否发生故障的判断。
-
公开(公告)号:CN110334948A
公开(公告)日:2019-10-15
申请号:CN201910602681.1
申请日:2019-07-05
申请人: 上海交通大学 , 上海交通大学烟台信息技术研究院
摘要: 本发明公开了一种基于特征量预测的电力设备局部放电严重程度评估方法,其包括训练步骤和评估步骤,其中:训练步骤包括:(1)收集电力设备的案例PRPS图谱数据;(2)对收集的案例PRPS图谱数据进行预处理;(3)采用自编码器提取的案例PRPS图谱数据的局部放电特征向量;(4)构建门控循环单元模块,输入局部放电特征向量以对其进行训练,以使其输出预测局部放电特征向量;(5)构建基于卷积神经网络的故障二分类模块,采用预测局部放电特征向量作为输入以对其进行训练,以使其基于预测局部放电特征向量所表征的故障概率值而输出该预测局部放电特征向量是否表征电力设备故障的判断。
-
公开(公告)号:CN110334865A
公开(公告)日:2019-10-15
申请号:CN201910602682.6
申请日:2019-07-05
申请人: 上海交通大学 , 上海交通大学烟台信息技术研究院
摘要: 本发明公开了一种基于卷积神经网络的电力设备故障率预测方法,其包括训练步骤和预测步骤,其中,训练步骤包括:(1)收集电力设备的案例PRPS图谱;(2)对收集的案例PRPS图谱数据进行预处理;(3)构建第一卷积神经网络模块,并对第一卷积神经网络模块进行训练,以使其输出为案例PRPS图谱数据对应的缺陷类型;(4)基于缺陷类型构建各个缺陷类型的数据集;(5)对应各个缺陷类型分别构建各自的故障二分类子模块,其中每一个故障二分类子模块均基于第二卷积神经网络模块而构建;训练第二卷积神经网络,以使各故障二分类子模块基于案例PRPS图谱数据所得到发生故障的概率值,而输出电力设备是否发生故障的判断。
-
公开(公告)号:CN110334948B
公开(公告)日:2023-04-07
申请号:CN201910602681.1
申请日:2019-07-05
申请人: 上海交通大学 , 上海交通大学烟台信息技术研究院
IPC分类号: G06Q10/0635 , G06Q10/0639 , G06Q50/06 , G06F18/214 , G01R31/12
摘要: 本发明公开了一种基于特征量预测的电力设备局部放电严重程度评估方法,其包括训练步骤和评估步骤,其中:训练步骤包括:(1)收集电力设备的案例PRPS图谱数据;(2)对收集的案例PRPS图谱数据进行预处理;(3)采用自编码器提取的案例PRPS图谱数据的局部放电特征向量;(4)构建门控循环单元模块,输入局部放电特征向量以对其进行训练,以使其输出预测局部放电特征向量;(5)构建基于卷积神经网络的故障二分类模块,采用预测局部放电特征向量作为输入以对其进行训练,以使其基于预测局部放电特征向量所表征的故障概率值而输出该预测局部放电特征向量是否表征电力设备故障的判断。
-
公开(公告)号:CN110334866B
公开(公告)日:2022-11-11
申请号:CN201910602683.0
申请日:2019-07-05
申请人: 上海交通大学 , 上海交通大学烟台信息技术研究院
摘要: 本发明公开了一种考虑绝缘缺陷类别与故障关联性的电力设备故障概率预测方法,其包括步骤:(1)采集电力设备的PRPS图谱数据并对其进行预处理;(2)基于经过预处理的PRPS图谱数据提取局部放电特征;(3)将局部放电特征输入经过训练的卷积神经网络,经过训练的卷积神经网络输出电力设备具有某类绝缘缺陷的概率值P(Dk);并且还将局部放电特征输入经过训练的长短时记忆神经网络,经过训练的长短时记忆神经网络输出电力设备在Dk的条件下发生故障的概率P(F|Dk);(4)基于下述公式获得电力设备的最终故障概率P(F):此外,本发明还公开了一种电力设备故障概率预测系统。
-
公开(公告)号:CN110334866A
公开(公告)日:2019-10-15
申请号:CN201910602683.0
申请日:2019-07-05
申请人: 上海交通大学 , 上海交通大学烟台信息技术研究院
摘要: 本发明公开了一种考虑绝缘缺陷类别与故障关联性的电力设备故障概率预测方法,其包括步骤:(1)采集电力设备的PRPS图谱数据并对其进行预处理;(2)基于经过预处理的PRPS图谱数据提取局部放电特征;(3)将局部放电特征输入经过训练的卷积神经网络,经过训练的卷积神经网络输出电力设备具有某类绝缘缺陷的概率值P(Dk);并且还将局部放电特征输入经过训练的长短时记忆神经网络,经过训练的长短时记忆神经网络输出电力设备在Dk的条件下发生故障的概率P(F|Dk);(4)基于下述公式获得电力设备的最终故障概率P(F):此外,本发明还公开了一种电力设备故障概率预测系统。
-
公开(公告)号:CN118171041A
公开(公告)日:2024-06-11
申请号:CN202410289948.7
申请日:2024-03-14
申请人: 上海交通大学
IPC分类号: G06F18/10 , G06F18/2131 , G01R31/62
摘要: 本发明公开了一种局部放电信号中白噪声和窄带干扰的去噪方法,其包括步骤:对采集的局部放电信号进行自适应噪声完备集合经验模态分解,得到局部放电信号的各阶本征模态分量;对各阶本征模态分量计算模糊熵,基于模糊熵的大小筛选出噪声主导的本征模态分量;采用改进的小波阈值去噪方法对所述噪声主导的本征模态分量进行去噪;基于去噪后的本征模态分量进行信号重构,得到去噪后的局部放电信号。相应地,本发明还公开了一种局部放电信号中白噪声和窄带干扰的去噪系统。
-
-
-
-
-
-
-
-
-