模糊测试用例生成与选择方法、装置、设备及介质

    公开(公告)号:CN117194219A

    公开(公告)日:2023-12-08

    申请号:CN202310953300.0

    申请日:2023-07-31

    摘要: 本发明公开了一种模糊测试用例生成与选择方法,涉及模糊测试技术领域,用于解决生成的测试用例单一的问题,该方法包括以下步骤:接收测试用例集,并获取测试用例集的测试用例分支信息;将分支信息转换为分支向量;对所述测试用例集进行预处理,将所述测试用例集转换为测试用例向量;将分支向量及测试用例向量输入预设网络模型进行训练,利用训练好的模型根据分支信息生成对应的测试用例;通过蚁群算法对生成的测试用例进行筛选;将筛选保留的测试用例输入模糊测试工具进行模糊测试。本发明还公开了一种模糊测试用例生成与选择装置、电子设备和计算机存储介质。本发明通过对测试用例分支信息进行分析学习,进而获取丰富多样的测试用例。

    模糊测试用例生成方法、装置、设备及介质

    公开(公告)号:CN117171010A

    公开(公告)日:2023-12-05

    申请号:CN202310955244.4

    申请日:2023-07-31

    摘要: 本发明公开了一种模糊测试用例生成方法,涉及深度学习技术领域,用于解决现有训练样本数量少,长短不一,存在着较多低质量、内容重复的问题,该方法包括以下步骤:通过模糊测试工具实时生成初始模糊测试用例;通过聚类对所述测试用例进行数据筛选;将筛选后的所述测试用例读取为二进制流,并进行归一化处理得到测试用例向量;对所述测试用例向量进行线性插值处理,得到合成向量;将所述测试用例向量及所述合成向量输入生成对抗网络进行模型训练并生成多样化模糊测试用例。本发明还公开了一种模糊测试用例生成装置、电子设备和计算机存储介质。本发明通过对对测试用例向量化,并进行线性插值处理,进而提高了训练样本的质量和数量。

    模糊测试用例生成方法及装置
    5.
    发明公开

    公开(公告)号:CN115455423A

    公开(公告)日:2022-12-09

    申请号:CN202211005472.7

    申请日:2022-08-22

    IPC分类号: G06F21/57 G06N3/04 G06N3/08

    摘要: 本发明公开了一种模糊测试用例生成方法,涉及深度生成网络技术领域,用于解决现有不能控制输入向量特征,无法生成特定测试用例的问题,该方法包括以下步骤:根据原始测试用例,得到训练数据集;构建差分自编码器的生成对抗网络模型;将所述训练数据集输入所述生成对抗网络模型进行训练,得到训练好的生成对抗网络模型;将所述训练数据集输入训练好的所述生成对抗网络模型生成测试用例。本发明通过构建差分自编码器生成对抗网络模型,进而使生成对抗网络更易收敛、所生成的测试用例更多样化,能够提高模糊测试的代码覆盖率和异常发现数。

    溢出型漏洞检测方法、装置、设备及介质

    公开(公告)号:CN115238276A

    公开(公告)日:2022-10-25

    申请号:CN202210821072.7

    申请日:2022-07-13

    IPC分类号: G06F21/57 G06K9/62 G06Q50/06

    摘要: 本发明公开了一种溢出型漏洞检测方法,涉及软件脆弱性检测技术领域,用于解决现有检测效果较差的问题,该方法包括以下步骤:生成基于图节点表示结构的CFG图表;将已赋权重的漏洞关键词与CFG图表中包含源代码关键词的节点相匹配,并对节点进行加权处理;计算每个加权处理后包含漏洞关键词节点的K跳范围权重和;筛选出权重和最大的N个深度为K的子图;比较子图与各类型溢出型漏洞源代码形成的图表示结构的相似度,子图中节点存在的漏洞类型为:相似度大于阈值threshold的图表示结构所对应的漏洞类型。本发明还公开了一种溢出型漏洞检测装置、电子设备和计算机存储介质。本发明通过对图结构进行比较,进而准确判断代码中的漏洞。

    基于并行集成学习的漏洞挖掘方法、装置、设备及介质

    公开(公告)号:CN115130110A

    公开(公告)日:2022-09-30

    申请号:CN202210797374.5

    申请日:2022-07-08

    IPC分类号: G06F21/57 G06K9/62 G06F40/289

    摘要: 本发明公开了一种基于并行集成学习的漏洞挖掘方法,涉及计算机网络安全技术领域,用于解决现有高漏报率和误报率较高的问题,该方法包括以下步骤:接收混合均匀的漏洞代码训练集;对所述训练集进行随机采样;对每个随机采样的样本进行分词,并对分词后的句子进行向量化,得到特征向量;将所述特征向量输入至增量式并行集成学习的多个基模型中进行训练;对各个基模型输出的分类结果进行投票,得到漏洞分类结果。本发明还公开了一种基于并行集成学习的漏洞挖掘装置、电子设备和计算机存储介质。本发明通过对提取的特征向量进行并行集成学习分类,进而获取准确的漏洞分类结果,避免了样本分布不均和重复挖掘的问题,且准确率高。