-
公开(公告)号:CN119445173A
公开(公告)日:2025-02-14
申请号:CN202411468457.5
申请日:2024-10-21
Applicant: 复旦大学附属中山医院
IPC: G06V10/762 , G06N20/00 , G06V10/74
Abstract: 本发明涉及一种基于最优传输原型网络的病理图像形态亚型分类方法,属于医学图像处理技术领域。所述方法包括构建病理图像数据集,使用无监督聚类方法初步分组,与病理学家合作优化数据集;通过数据增强策略对图像进行预处理;增强后的图像通过预训练模型进行特征提取;构建并训练OT‑ProtoNet模型;设置原型,确定维度和数量,基于软分配机制实现类别特定原型,基于OT距离计算相似度,设置训练参数和选择优化算法训练模型,确保模型有效学习数据中的关键特征;再基于OT‑ProtoNet模型进行图像形态亚型分类。通过本发明可获得一种能够充分利用预训练特征、可提高分类准确率、保持可解释性的病理图像形态亚型分类方法。