-
公开(公告)号:CN115034979A
公开(公告)日:2022-09-09
申请号:CN202210593968.4
申请日:2022-05-27
Applicant: 大连海事大学
Abstract: 本发明提供一种基于双路径联合校正的深度学习水下图像增强方法,包括以下步骤:获取基本的特征图;分别获取到R、G、B通道的特征图;添加通道注意力机制得到权重矩阵乘到之前特征图上对应通道的每个像素值;获取富有代表性的颜色特征;将所述纹理特征提取路径中获取的基本特征图进行双维注意力的处理;通过像素注意力模块对所述高阶特征形成重新校准的纹理细节特征;将颜色特征和纹理特征拼接为一个全新的综合特征,馈送到多尺度的U‑Net网络中;最终输出增强后的结果图像。本发明采用三元组特征提取模块,将图像R、G、B通道分别处理,平衡了退化图像的R、G、B颜色的灰度比,解决了图像的偏色问题,获得了更好的色彩校正效果。
-
公开(公告)号:CN114612314A
公开(公告)日:2022-06-10
申请号:CN202111571942.1
申请日:2021-12-21
Applicant: 大连海事大学
Abstract: 本发明提供一种基于双引导滤波的水下图像增强方法,首先,对水下图像进行红通道补偿和灰度世界白平衡,校正水下图像的色彩;接下来,使用引导滤波对白平衡后的图像进行增强,得到第一个融合输入图像。然后使用不同尺度的引导滤波得到精确的平滑图像,作为第二个融合输入图像。最后,使用多尺度融合方法,根据输入图分别得到四个权重图,得到标准化权重图,将权重图与输入图进行多尺度融合。本发明利用双引导滤波对水下图像处理,使得增强后的图像视觉效果较好,提升了清晰度。
-
公开(公告)号:CN114612314B
公开(公告)日:2025-03-04
申请号:CN202111571942.1
申请日:2021-12-21
Applicant: 大连海事大学
Abstract: 本发明提供一种基于双引导滤波的水下图像增强方法,首先,对水下图像进行红通道补偿和灰度世界白平衡,校正水下图像的色彩;接下来,使用引导滤波对白平衡后的图像进行增强,得到第一个融合输入图像。然后使用不同尺度的引导滤波得到精确的平滑图像,作为第二个融合输入图像。最后,使用多尺度融合方法,根据输入图分别得到四个权重图,得到标准化权重图,将权重图与输入图进行多尺度融合。本发明利用双引导滤波对水下图像处理,使得增强后的图像视觉效果较好,提升了清晰度。
-
公开(公告)号:CN115034979B
公开(公告)日:2025-04-18
申请号:CN202210593968.4
申请日:2022-05-27
Applicant: 大连海事大学
Abstract: 本发明提供一种基于双路径联合校正的深度学习水下图像增强方法,包括以下步骤:获取基本的特征图;分别获取到R、G、B通道的特征图;添加通道注意力机制得到权重矩阵乘到之前特征图上对应通道的每个像素值;获取富有代表性的颜色特征;将所述纹理特征提取路径中获取的基本特征图进行双维注意力的处理;通过像素注意力模块对所述高阶特征形成重新校准的纹理细节特征;将颜色特征和纹理特征拼接为一个全新的综合特征,馈送到多尺度的U‑Net网络中;最终输出增强后的结果图像。本发明采用三元组特征提取模块,将图像R、G、B通道分别处理,平衡了退化图像的R、G、B颜色的灰度比,解决了图像的偏色问题,获得了更好的色彩校正效果。
-
-
-