一种基于BILSTM-MDN的传输线路动态热定值概率预测方法

    公开(公告)号:CN115577845A

    公开(公告)日:2023-01-06

    申请号:CN202211284963.X

    申请日:2022-10-20

    摘要: 本发明提供一种基于BILSTM‑MDN的传输线路动态热定值概率预测方法,属于电力系统线路运行状态评估领域。首先,对传输线周围环境数据和DTR序列数据进行归一化处理,并计算其自相关系数。其次,将数据按照共同输入长度生成滑窗特征和标签,滚动生成滑窗数据集,并划分训练集和预测集。第三,搭建BILSTM‑MDN神经网络,设定超参数后,输入训练集进行学习,调整超参数直至误差达到最小。最后,通过预测集对模型的预测准确度进行评估,并得到最终的预测结果和预测误差。本发明将MDN的前置网络替换为BILSTM,结合BILSTM的时序特征提取能力和MDN输出概率密度的能力,从而可以对DTR进行精确的概率预测,并能够减少环节间的人为因素的影响。