-
公开(公告)号:CN114037714B
公开(公告)日:2024-05-24
申请号:CN202111288047.9
申请日:2021-11-02
申请人: 大连理工大学人工智能大连研究院 , 大连医工机器人科技有限公司
IPC分类号: G06T7/11 , G06T17/00 , G06V10/774 , G06V10/80 , G06N3/0464 , G06N3/08
摘要: 本发明提供了一种面向前列腺系统穿刺的3D MR与TRUS图像分割方法,包括以下步骤:分别获取前列腺3D MR与TRUS图像数据集;分别对数据集进行预处理,数据增强后得到训练数据集;构建分割生成器网络模型,分割生成器网络包括编码器、解码器、跳跃连接和Bottleneck模块;构建鉴别器网络模型,鉴别器网络用于区分分割生成器网络输出结果和Ground truth,并将鉴别结果用于分割生成器网络的训练;训练数据集随机划分为训练集和验证集两部分,采用训练数据集对分割生成器网络进行训练;建立分割效果的评估指标,通过消融实验和对比实验评估模型效果。本发明提供一种基于深度学习方法的,面向前列腺系统穿刺的3D MR与TRUS图像分割方法,实现3D MR与TRUS图像的实时准确分割。
-
公开(公告)号:CN114037714A
公开(公告)日:2022-02-11
申请号:CN202111288047.9
申请日:2021-11-02
申请人: 大连理工大学人工智能大连研究院 , 大连医工机器人科技有限公司
摘要: 本发明提供了一种面向前列腺系统穿刺的3D MR与TRUS图像分割方法,包括以下步骤:分别获取前列腺3D MR与TRUS图像数据集;分别对数据集进行预处理,数据增强后得到训练数据集;构建分割生成器网络模型,分割生成器网络包括编码器、解码器、跳跃连接和Bottleneck模块;构建鉴别器网络模型,鉴别器网络用于区分分割生成器网络输出结果和Ground truth,并将鉴别结果用于分割生成器网络的训练;训练数据集随机划分为训练集和验证集两部分,采用训练数据集对分割生成器网络进行训练;建立分割效果的评估指标,通过消融实验和对比实验评估模型效果。本发明提供一种基于深度学习方法的,面向前列腺系统穿刺的3D MR与TRUS图像分割方法,实现3D MR与TRUS图像的实时准确分割。
-