-
公开(公告)号:CN107067118A
公开(公告)日:2017-08-18
申请号:CN201710349044.9
申请日:2017-05-17
申请人: 山东大学 , 中国电力科学研究院 , 国家电网公司 , 国网河南省电力公司经济技术研究院
摘要: 本发明公开了一种基于数据挖掘的电气量超短期预测方法及系统,其中该方法包括:对待预测量时间序列进行标准正态化处理,并对标准正态化后的数据进行非线性聚合度和最优嵌入维数E的计算,以考察给定的动态系统的非线性程度;根据最优嵌入维数E,计算待预测量时间序列的延迟时间τ;根据最优嵌入维数E和延迟时间τ,对待预测量时间序列进行相空间重构;构建经验动态模型,在重构相空间内采用单纯形投影法对给定的动态系统进行预测,得到待预测量的预测结果。
-
公开(公告)号:CN109978222B
公开(公告)日:2021-04-27
申请号:CN201910009520.1
申请日:2019-01-04
申请人: 国网山东省电力公司电力科学研究院 , 山东大学 , 山东鲁能软件技术有限公司 , 国家电网有限公司
发明人: 孙树敏 , 王士柏 , 赵岩 , 程艳 , 杨明 , 王楠 , 张兴友 , 王玥娇 , 滕玮 , 于芃 , 李广磊 , 魏大钧 , 王勃 , 赵元春 , 马嘉翼 , 王立峰 , 王尚斌 , 李洪海
摘要: 一种基于贝叶斯网络的风电爬坡事件概率预测方法及系统,根据所掌握的观测样本数据,挖掘风电爬坡事件与风速、风向、温度、气压、湿度等相关气象影响因子间的相依关系,搭建与样本数据拟合程度最高的贝叶斯网络拓扑结构;定量描述爬坡事件与各气象因子间的条件相依关系,估计贝叶斯网络各节点处的条件概率表内各项条件概率的取值,与贝叶斯网络拓扑结构共同组成风电爬坡事件预测的贝叶斯网络模型;由所掌握的预测时刻的数值天气预报信息,推断爬坡事件各状态发生的条件概率;自适应地调整各节点处相应条件概率的取值,从而优化推断出的爬坡事件各状态发生的条件概率结果,实现预测结果可靠性与敏锐性的折中。
-
公开(公告)号:CN109978222A
公开(公告)日:2019-07-05
申请号:CN201910009520.1
申请日:2019-01-04
申请人: 国网山东省电力公司电力科学研究院 , 山东大学 , 山东鲁能软件技术有限公司 , 国家电网有限公司
发明人: 孙树敏 , 王士柏 , 赵岩 , 程艳 , 杨明 , 王楠 , 张兴友 , 王玥娇 , 滕玮 , 于芃 , 李广磊 , 魏大钧 , 王勃 , 赵元春 , 马嘉翼 , 王立峰 , 王尚斌 , 李洪海
摘要: 一种基于贝叶斯网络的风电爬坡事件概率预测方法及系统,根据所掌握的观测样本数据,挖掘风电爬坡事件与风速、风向、温度、气压、湿度等相关气象影响因子间的相依关系,搭建与样本数据拟合程度最高的贝叶斯网络拓扑结构;定量描述爬坡事件与各气象因子间的条件相依关系,估计贝叶斯网络各节点处的条件概率表内各项条件概率的取值,与贝叶斯网络拓扑结构共同组成风电爬坡事件预测的贝叶斯网络模型;由所掌握的预测时刻的数值天气预报信息,推断爬坡事件各状态发生的条件概率;自适应地调整各节点处相应条件概率的取值,从而优化推断出的爬坡事件各状态发生的条件概率结果,实现预测结果可靠性与敏锐性的折中。
-
公开(公告)号:CN109886452A
公开(公告)日:2019-06-14
申请号:CN201910009512.7
申请日:2019-01-04
申请人: 国网山东省电力公司电力科学研究院 , 山东大学 , 山东鲁能软件技术有限公司 , 国家电网有限公司
发明人: 程艳 , 王士柏 , 杨明 , 孙树敏 , 苏建军 , 孟瑜 , 王楠 , 张兴友 , 王玥娇 , 滕玮 , 于芃 , 李广磊 , 魏大钧 , 王尚斌 , 刘守刚 , 王勃 , 赵元春 , 马嘉翼
摘要: 本发明公开了一种基于经验动态建模的风电功率超短期概率预测方法及系统,其中该方法包括:对待预测量时间序列进行标准正态化处理,并对标准正态化处理后的数据进行非线性聚合度计算,以考察给定的动态系统的非线性程度;采用粒子群优化算法,计算最优嵌入维数E和延迟时间τ;进一步地,对待预测量时间序列进行相空间重构;构建经验动态模型,在重构相空间内采用单纯形投影法对给定的动态系统进行预测,得到待预测量的预测结果。预测结果显示,采用基于经验动态建模的风电功率超短期概率预测方法可实现对风力发电动态过程完全依据数据的客观描述,显著提升了概率预测的有效性。
-
公开(公告)号:CN109886452B
公开(公告)日:2021-06-15
申请号:CN201910009512.7
申请日:2019-01-04
申请人: 国网山东省电力公司电力科学研究院 , 山东大学 , 山东鲁能软件技术有限公司 , 国家电网有限公司
发明人: 程艳 , 王士柏 , 杨明 , 孙树敏 , 苏建军 , 孟瑜 , 王楠 , 张兴友 , 王玥娇 , 滕玮 , 于芃 , 李广磊 , 魏大钧 , 王尚斌 , 刘守刚 , 王勃 , 赵元春 , 马嘉翼
摘要: 本发明公开了一种基于经验动态建模的风电功率超短期概率预测方法及系统,其中该方法包括:对待预测量时间序列进行标准正态化处理,并对标准正态化处理后的数据进行非线性聚合度计算,以考察给定的动态系统的非线性程度;采用粒子群优化算法,计算最优嵌入维数E和延迟时间τ;进一步地,对待预测量时间序列进行相空间重构;构建经验动态模型,在重构相空间内采用单纯形投影法对给定的动态系统进行预测,得到待预测量的预测结果。预测结果显示,采用基于经验动态建模的风电功率超短期概率预测方法可实现对风力发电动态过程完全依据数据的客观描述,显著提升了概率预测的有效性。
-
-
-
-