一种铝合金型材的等温挤压方法

    公开(公告)号:CN114939604A

    公开(公告)日:2022-08-26

    申请号:CN202210556432.5

    申请日:2022-05-20

    IPC分类号: B21C23/00 B21C25/02 B21C31/00

    摘要: 本发明公开了一种铝合金型材的等温挤压方法,其通过测量待挤压铝合金铸棒的初始加热温度和挤压后型材上选取的各测量位置的型材微观组织的亚晶平均尺寸,并根据该亚晶平均尺寸通过Z参数计算得到各测量位置型材的模具出口温度,根据所述模具出口温度与型材挤压前的初始加热温度相比较,得到型材挤压过程中各部位的温升情况,进而对铸棒的梯度加热温度进行设置以实现等温挤压。本发明通过将型材组织与实际温度进行关联,实现了对挤压模具出口温度的精确推算,实现了对铝合金型材等温挤压时梯度加热温度的准确设置。

    一种高强焊缝的制备方法
    5.
    发明公开

    公开(公告)号:CN114289874A

    公开(公告)日:2022-04-08

    申请号:CN202210059719.7

    申请日:2022-01-19

    IPC分类号: B23K26/348 B23K26/70

    摘要: 本发明提供了一种高强焊缝的制备方法,包括:以高钛铝合金焊丝为填充材料,采用激光电弧复合焊对抗拉强度超过300MPa的高强可热处理的铝合金进行焊接。本发明利用高钛铝合金焊丝使焊缝中钛元素含量控制在0.6%~1.0%之间,在液相中形成大量的TiAl3金属间化合物,为α‑Al的形核提供大量的异质形核点,显著提高了α‑Al的形核率,焊缝晶粒细化至15~25μm,并有效抑制了焊缝边部柱状晶的生长,相比于传统铝合金激光电弧复合焊焊缝,焊缝强度提高了10%~15%。本发明采用低成本钛元素细化晶粒的方法,在有效提高焊缝强度的同时,降低了生产成本。

    一种连铸坯组合压下方法

    公开(公告)号:CN110802207A

    公开(公告)日:2020-02-18

    申请号:CN201911101751.1

    申请日:2019-11-12

    申请人: 苏州大学

    IPC分类号: B22D11/12 B22D11/16

    摘要: 本发明揭示了一种连铸坯组合压下方法,通过对连铸坯实施压下前建立凝固模型,确定铸坯凝固终点位置及中心固相率,预测出铸坯中心宏观偏析最终形成位置的临界固相率和中心疏松开始形成位置的临界固相率,在铸坯凝固末端,中心固相率小于宏观偏析最终形成位置的临界固相率的区域进行动态轻压下,在中心固相率大于中心疏松开始形成位置的临界固相率的区域进行重压下。并且采用压下模型预测不同压下量对中心偏析和疏松的改善效果,以确定最佳压下位置和压下量。本发明能够有效改善铸坯中心偏析及疏松,同时可以预先确定最佳压下参数,实现最佳压下效果,降低实验成本。

    一种连铸坯组合压下方法

    公开(公告)号:CN110802207B

    公开(公告)日:2021-09-24

    申请号:CN201911101751.1

    申请日:2019-11-12

    申请人: 苏州大学

    IPC分类号: B22D11/12 B22D11/16

    摘要: 本发明揭示了一种连铸坯组合压下方法,通过对连铸坯实施压下前建立凝固模型,确定铸坯凝固终点位置及中心固相率,预测出铸坯中心宏观偏析最终形成位置的临界固相率和中心疏松开始形成位置的临界固相率,在铸坯凝固末端,中心固相率小于宏观偏析最终形成位置的临界固相率的区域进行动态轻压下,在中心固相率大于中心疏松开始形成位置的临界固相率的区域进行重压下。并且采用压下模型预测不同压下量对中心偏析和疏松的改善效果,以确定最佳压下位置和压下量。本发明能够有效改善铸坯中心偏析及疏松,同时可以预先确定最佳压下参数,实现最佳压下效果,降低实验成本。

    枝晶粗化的三维模拟方法
    10.
    发明公开

    公开(公告)号:CN111640469A

    公开(公告)日:2020-09-08

    申请号:CN202010421959.8

    申请日:2020-05-18

    申请人: 苏州大学

    IPC分类号: G16C10/00 G16C60/00 G06F30/23

    摘要: 本发明公开了一种枝晶粗化的三维模拟方法,其包括如下步骤:S1、网格划分;S2、输入三维CA-FDM模型中所需的物理参数;S3、将柱状枝晶固相分数和浓度场导入所述三维CA-FDM模型中;S4、查找固液界面;S5、计算固相分数;S6、计算溶质浓度场;S7、更新元胞参数;S8、判断是否满足输出条件;若不满足,进行步骤S4;若满足,输出结果。该方法,基于三维CA-FDM模型,能够再现三维空间下的枝晶粗化过程。三维CA-FDM模型能够分别对各机制对枝晶粗化的贡献进行定量研究。另,还能够再现典型的枝晶粗化模式,包括小枝晶臂熔化、枝晶臂间凹槽处的凝固生长和枝晶臂尖端合并等。三维模拟结果更加接近实际实验,能够进行有效预测。