-
公开(公告)号:CN116129143B
公开(公告)日:2023-09-08
申请号:CN202310100687.5
申请日:2023-02-08
申请人: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
摘要: 一种基于串并联网络特征融合的边缘阔提取方法,属于医学影像边缘轮廓提取技术领域,科学有效的捕获了CTA影像轮廓细节信息,自动学习不同的特征权重,强化目标区域特征,又将不同分辨率的特征图转换为高分辨率特征图并融合,提高CTA影像轮廓清晰度,保证了信息的完整性。该网络结构并没有增加网络的横向深度,而是纵向扩展了网络,增加了模型的非线性,降低了相邻像素点的相关性,更有利于清晰边缘的提取。
-
公开(公告)号:CN115357805B
公开(公告)日:2023-06-16
申请号:CN202210920144.3
申请日:2022-08-02
申请人: 山东省计算中心(国家超级计算济南中心) , 山东省人工智能研究院 , 齐鲁工业大学
IPC分类号: G06F16/9536 , G06N3/0464 , G06N3/042 , G06N3/08
摘要: 一种基于内外部视角的群组推荐方法,基于外部视角,将群组与餐厅和用户与餐厅的交互看作两个独立的过程,利用图卷积分别学习这两种交互行为中隐含的偏好信息,使模型学习到用户作为个体时的个人偏好以及群组作为整体时的固定偏好。基于内部视角,将群组决策过程中成员之间存在的互动商讨过程考虑在内,采用图注意力神经网络学习此过程中产生的成员间的相互影响,使模型能够准确捕捉受影响后的成员偏好变化。基于内部视角,不同成员在群组中的作用与影响力不同,导致在群组决策中的贡献度不同,采用注意力机制学习成员贡献度大小,能够以一种动态的方式学习聚合策略,更好的权衡不同成员的偏好,解决偏好冲突问题。
-
公开(公告)号:CN113868537B
公开(公告)日:2022-07-05
申请号:CN202111212853.8
申请日:2021-10-19
申请人: 山东省人工智能研究院 , 齐鲁工业大学 , 山东省计算中心(国家超级计算济南中心)
IPC分类号: G06F16/9536 , G06F16/9538 , G06Q30/02 , G06Q30/06
摘要: 一种基于多行为会话图融合的推荐方法,使用目标用户和相似用户的联合多行为序列数据构建多行为带权无向会话图。在此基础上,根据不同权重聚合邻居信息得到项目多行为嵌入,串联项目多行为嵌入并结合注意力机制获取用户兴趣表征。最终,使用项目嵌入和用户兴趣表征进行内积得到归一化分数决定是否推荐项目。相较其他会话型推荐方法,一是从建模用户多行为序列数据,能够得到包含更多行为意图的项目嵌入;二是将序列构建为带权无向图,解除了聚合邻居信息时的单向束缚,模型能学习到项目间的双向关系;三是使用相似用户补充目标用户数据,模型能够学习到没有出现在目标用户历史数据中的“新颖”的项目,进而提高推荐结果的多样性和准确性。
-
公开(公告)号:CN114741572B
公开(公告)日:2024-07-23
申请号:CN202210364463.0
申请日:2022-04-08
申请人: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
IPC分类号: G06F16/9035 , G06F16/9038 , G06F16/906
摘要: 一种基于图卷积神经网络群组发现的群组推荐方法,根据电影主题类别将用户—电影交互数据划分为数据子集,使用各数据子集构建用户—电影交互图,通过图卷积网络从交互图中学习用户/电影嵌入表示,然后利用Kmeans算法进行群组发现,通过均值融合策略,将群组成员嵌入表示融合为群组嵌入表示,最后将群组嵌入表示与电影嵌入表示进行内积得到群组对电影的预测偏好得分,根据偏好得分向群组推荐电影。侧重于群组发现阶段的用户嵌入获取方法,考虑了群组的内部一致性对群组推荐算法性能的影响,将用户—电影的交互信息融入用户/电影的特征信息之中,提高了群组发现中的用户嵌入表示的准确度,进而增强了群组推荐算法的性能。
-
公开(公告)号:CN117338310A
公开(公告)日:2024-01-05
申请号:CN202311523667.5
申请日:2023-11-16
申请人: 齐鲁工业大学(山东省科学院) , 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心)
IPC分类号: A61B5/346
摘要: 一种基于对比学习和多尺度特征提取的心电信号分类方法,涉及心电信号分类技术领域,SE‑ResNeXt‑CAN网络模型由浅层特征提取模块、第一SERM模块、第二SERM模块、第一CARM模块、第二CARM模块构成,SE‑ResNeXt‑CAN网络模型通过多个模块的组合和优化,自适应地学习各个通道之间的关联性,扩大感受野,充分捕捉关键特征,提升了心电信号分类任务的性能和泛化能力。
-
公开(公告)号:CN117315798A
公开(公告)日:2023-12-29
申请号:CN202311546911.X
申请日:2023-11-20
申请人: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心) , 山东省人工智能研究院
IPC分类号: G06V40/40 , G06V40/16 , G06V20/40 , G06V10/774 , G06V10/82 , G06N3/0464
摘要: 一种基于身份脸型特征的深度伪造检测方法,涉及深度伪造检测技术领域,引入身份特征与3D人脸形状特征相结合,设计了脸型一致性自注意力模块、身份引导脸型一致性注意力模块,挖掘其中的身份脸型不一致特征,根据不同检测人脸的参考人脸信息,具有更强的针对性。额外利用了待检测人脸的参考人脸辅助检测,具有更强的针对性。利用身份特征和形状特征实现更好的泛化检测性能,提高深度伪造检测性能和精准度。
-
公开(公告)号:CN116468619A
公开(公告)日:2023-07-21
申请号:CN202310184267.X
申请日:2023-03-01
申请人: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
摘要: 一种基于多特征反馈融合的医学影像去噪方法,运用了采用了解码‑编码的网络框架,通过多特征反馈融合网络对图像进行特征提取。特征反馈融合网络由多特征反馈融合模块(MFFM)和并联扩张卷积模块组成。通过并联多个不同扩张率的扩张卷积层在提取浅层特征的同时既增大特征图的感受野,又保证信息不丢失。多特征反馈融合模块(MFFM)可以将进一步提取的深层特征以注意力机制的形式反馈给浅层特征,从而实现深层特征和浅层特征的深度融合。将融合后的特征图池化放大至相同尺寸可以保证输入特征图的shape不变。化特征向量,降低噪声因子的干扰。恢复特征图融合了关键像素特征,强化了特殊而又复杂的模糊边缘,降低了噪声对冠状动脉CTA的影响。
-
公开(公告)号:CN118247204A
公开(公告)日:2024-06-25
申请号:CN202311524364.5
申请日:2023-11-16
申请人: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心) , 山东省人工智能研究院
摘要: 一种基于提示学习的多器官细胞核分割方法,涉及医学图像处理技术领域,利用文本与图像多模态信息充分挖掘图像信息,学习到语义信息与分割目标之间的关联,对目标区域的分割进行综合学习。基于clip模型从6个公开细胞核数据集中训练学习大量的文本和图像配对知识,来获得细胞核的语义理解先验知识,使得模型完全适合细胞核分割任务。构建模型通过输入图像与文本提示,利用文本和图像多模态信息,完成6个不同器官细胞核识别并且准确分割任务,计算效率更高,该模型还可以在缺乏标注的部分数据集上使用充分文本提示完成准确的分割任务,更具备实用性与可拓展性。
-
公开(公告)号:CN117474741B
公开(公告)日:2024-05-07
申请号:CN202311561214.1
申请日:2023-11-22
申请人: 齐鲁工业大学(山东省科学院) , 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心)
IPC分类号: G06T1/00 , G06V40/16 , G06V20/00 , G06V10/44 , G06V10/77 , G06N3/0455 , G06N3/0464
摘要: 一种基于人脸关键点水印的主动防御检测方法,涉及图像伪造检测领域,对于一张原始图像提取人脸关键点,将提取出来的人脸关键点转换成二进制的水印。随后二进制水印被嵌入到原始图像中得到水印图像,继而水印图像会经过非恶意/恶意操作得到操作图像或篡改图像,使得模型能够对这些非恶意/恶意操作具有鲁棒性,该方法引入了人脸关键点,既为每个人生成独有的水印也实现了溯源以及检测功能。
-
公开(公告)号:CN116468619B
公开(公告)日:2024-02-06
申请号:CN202310184267.X
申请日:2023-03-01
申请人: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
摘要: 一种基于多特征反馈融合的医学影像去噪方法,运用了采用了解码‑编码的网络框架,通过多特征反馈融合网络对图像进行特征提取。特征反馈融合网络由多特征反馈融合模块(MFFM)和并联扩张卷积模块组成。通过并联多个不同扩张率的扩张卷积层在提取浅层特征的同时既增大特征图的感受野,又保证信息不丢失。多特征反馈融合模块(MFFM)可以将进一步提取的深层特征以注意力机制的形式反馈给浅层特征,从而实现深层特征和浅层特征的深度融合。将融合后的特征图池化放大至相同尺寸可以保证输入特征图的shape不变。化特征向量,降低噪声因子的干扰。恢复特征图融合了关键像素特征,强化了特
-
-
-
-
-
-
-
-
-