一种基于内外部视角的群组推荐方法

    公开(公告)号:CN115357805B

    公开(公告)日:2023-06-16

    申请号:CN202210920144.3

    申请日:2022-08-02

    摘要: 一种基于内外部视角的群组推荐方法,基于外部视角,将群组与餐厅和用户与餐厅的交互看作两个独立的过程,利用图卷积分别学习这两种交互行为中隐含的偏好信息,使模型学习到用户作为个体时的个人偏好以及群组作为整体时的固定偏好。基于内部视角,将群组决策过程中成员之间存在的互动商讨过程考虑在内,采用图注意力神经网络学习此过程中产生的成员间的相互影响,使模型能够准确捕捉受影响后的成员偏好变化。基于内部视角,不同成员在群组中的作用与影响力不同,导致在群组决策中的贡献度不同,采用注意力机制学习成员贡献度大小,能够以一种动态的方式学习聚合策略,更好的权衡不同成员的偏好,解决偏好冲突问题。

    一种基于多行为会话图融合的推荐方法

    公开(公告)号:CN113868537B

    公开(公告)日:2022-07-05

    申请号:CN202111212853.8

    申请日:2021-10-19

    摘要: 一种基于多行为会话图融合的推荐方法,使用目标用户和相似用户的联合多行为序列数据构建多行为带权无向会话图。在此基础上,根据不同权重聚合邻居信息得到项目多行为嵌入,串联项目多行为嵌入并结合注意力机制获取用户兴趣表征。最终,使用项目嵌入和用户兴趣表征进行内积得到归一化分数决定是否推荐项目。相较其他会话型推荐方法,一是从建模用户多行为序列数据,能够得到包含更多行为意图的项目嵌入;二是将序列构建为带权无向图,解除了聚合邻居信息时的单向束缚,模型能学习到项目间的双向关系;三是使用相似用户补充目标用户数据,模型能够学习到没有出现在目标用户历史数据中的“新颖”的项目,进而提高推荐结果的多样性和准确性。

    基于图卷积神经网络群组发现的群组推荐方法

    公开(公告)号:CN114741572B

    公开(公告)日:2024-07-23

    申请号:CN202210364463.0

    申请日:2022-04-08

    摘要: 一种基于图卷积神经网络群组发现的群组推荐方法,根据电影主题类别将用户—电影交互数据划分为数据子集,使用各数据子集构建用户—电影交互图,通过图卷积网络从交互图中学习用户/电影嵌入表示,然后利用Kmeans算法进行群组发现,通过均值融合策略,将群组成员嵌入表示融合为群组嵌入表示,最后将群组嵌入表示与电影嵌入表示进行内积得到群组对电影的预测偏好得分,根据偏好得分向群组推荐电影。侧重于群组发现阶段的用户嵌入获取方法,考虑了群组的内部一致性对群组推荐算法性能的影响,将用户—电影的交互信息融入用户/电影的特征信息之中,提高了群组发现中的用户嵌入表示的准确度,进而增强了群组推荐算法的性能。

    一种基于内外部视角的群组推荐方法

    公开(公告)号:CN115357805A

    公开(公告)日:2022-11-18

    申请号:CN202210920144.3

    申请日:2022-08-02

    IPC分类号: G06F16/9536 G06N3/04 G06N3/08

    摘要: 一种基于内外部视角的群组推荐方法,基于外部视角,将群组与餐厅和用户与餐厅的交互看作两个独立的过程,利用图卷积分别学习这两种交互行为中隐含的偏好信息,使模型学习到用户作为个体时的个人偏好以及群组作为整体时的固定偏好。基于内部视角,将群组决策过程中成员之间存在的互动商讨过程考虑在内,采用图注意力神经网络学习此过程中产生的成员间的相互影响,使模型能够准确捕捉受影响后的成员偏好变化。基于内部视角,不同成员在群组中的作用与影响力不同,导致在群组决策中的贡献度不同,采用注意力机制学习成员贡献度大小,能够以一种动态的方式学习聚合策略,更好的权衡不同成员的偏好,解决偏好冲突问题。