基于同源性分析的物联网固件漏洞检测方法及系统

    公开(公告)号:CN114500043B

    公开(公告)日:2022-08-26

    申请号:CN202210086936.5

    申请日:2022-01-25

    IPC分类号: H04L9/40 H04L67/12

    摘要: 本发明公开了基于同源性分析的物联网固件漏洞检测方法,包括:建立函数漏洞库;提取待检测固件的可执行文件集合以及对应的指令架构,将在函数漏洞库中存在同名同架构的可执行文件作为待检测可执行文件;对待检测可执行文件进行反汇编,获取待检测可执行文件的函数集合,将在函数漏洞库中存在同名的函数作为待检测函数;对待检测函数的二进制文件进行反汇编,提取待检测函数的汇编代码,形成待检测函数指令集合,计算待检测函数指令集合与漏洞函数的指令集合的相似度。本发明还提供了基于同源性分析的物联网固件漏洞检测系统。本发明能够更加高效、精确地检测固件中存在的同源性漏洞。

    基于同源性分析的物联网固件漏洞检测方法及系统

    公开(公告)号:CN114500043A

    公开(公告)日:2022-05-13

    申请号:CN202210086936.5

    申请日:2022-01-25

    IPC分类号: H04L9/40 H04L67/12

    摘要: 本发明公开了基于同源性分析的物联网固件漏洞检测方法,包括:建立函数漏洞库;提取待检测固件的可执行文件集合以及对应的指令架构,将在函数漏洞库中存在同名同架构的可执行文件作为待检测可执行文件;对待检测可执行文件进行反汇编,获取待检测可执行文件的函数集合,将在函数漏洞库中存在同名的函数作为待检测函数;对待检测函数的二进制文件进行反汇编,提取待检测函数的汇编代码,形成待检测函数指令集合,计算待检测函数指令集合与漏洞函数的指令集合的相似度。本发明还提供了基于同源性分析的物联网固件漏洞检测系统。本发明能够更加高效、精确地检测固件中存在的同源性漏洞。

    工业环境下面向通信受限物联网节点的数据汇集方法及装置

    公开(公告)号:CN117939563B

    公开(公告)日:2024-09-03

    申请号:CN202410145361.9

    申请日:2024-01-31

    摘要: 本发明属于物联网数据采集的技术领域,更具体地,涉及一种工业环境下面向通信受限物联网节点的数据汇集方法及装置。所述方法包括:S1、给定节点数据集和预设参数,预设参数包括节点覆盖半径R、节点覆盖率C以及初始簇头个数K;S2、基于给定的节点数据集和预设参数,使用K‑medoids聚类算法将节点数据集中的所有传感器节点划分为K个簇;S3、计算K个簇的总节点覆盖率C′,若总节点覆盖率C′大于给定的节点覆盖率C,则执行步骤S4,若总节点覆盖率C′小于或等于给定的节点覆盖率C,则将给定的初始簇头个数K加一,重复执行步骤S2;S4、判断待发送数据的成员节点与其对应的目标簇头节点之间是否存在中间成员节点,若存在:筛选待发送数据的成员节点与其对应的目标簇头节点之间的最优通信链路,并控制待发送数据的成员节点通过最优通信链路将其数据传输至对应的目标簇头节点。本发明解决了现有方法无法确保在数据传输过程中节点之间建立有效的通信链路的问题。

    工业环境下面向通信受限物联网节点的数据汇集方法及装置

    公开(公告)号:CN117939563A

    公开(公告)日:2024-04-26

    申请号:CN202410145361.9

    申请日:2024-01-31

    摘要: 本发明属于物联网数据采集的技术领域,更具体地,涉及一种工业环境下面向通信受限物联网节点的数据汇集方法及装置。所述方法包括:S1、给定节点数据集和预设参数,预设参数包括节点覆盖半径R、节点覆盖率C以及初始簇头个数K;S2、基于给定的节点数据集和预设参数,使用K‑medoids聚类算法将节点数据集中的所有传感器节点划分为K个簇;S3、计算K个簇的总节点覆盖率C′,若总节点覆盖率C′大于给定的节点覆盖率C,则执行步骤S4,若总节点覆盖率C′小于或等于给定的节点覆盖率C,则将给定的初始簇头个数K加一,重复执行步骤S2;S4、判断待发送数据的成员节点与其对应的目标簇头节点之间是否存在中间成员节点,若存在:筛选待发送数据的成员节点与其对应的目标簇头节点之间的最优通信链路,并控制待发送数据的成员节点通过最优通信链路将其数据传输至对应的目标簇头节点。本发明解决了现有方法无法确保在数据传输过程中节点之间建立有效的通信链路的问题。

    基于信誉评估的抗拜占庭攻击的去中心化学习方法及系统

    公开(公告)号:CN116862021B

    公开(公告)日:2024-05-03

    申请号:CN202310953891.1

    申请日:2023-07-31

    IPC分类号: G06N20/00

    摘要: 本发明公开了一种基于信誉评估的抗拜占庭攻击的去中心化学习方法及系统,涉及人工智能与信息安全交叉技术领域,该方法包括:基于获取的分布式网络中各个节点的训练数据,通过不断迭代训练实现去中心化学习,其训练过程中:分布式网络中的每一节点获取自节点的邻居节点当前轮次的局部参数,以此计算每一邻居节点当前轮次的信誉贡献值和信誉损失值,确定信誉有效值,进而确定自节点及其每一邻居节点的全局历史信誉值;基于全局历史信誉值为自节点及其每一邻居节点分配权重,进而更新自节点的局部参数并发送至邻居节点。本发明构建信誉评估机制,建立全局历史信誉值模型,通过权重分配,降低拜占庭攻击的影响,达到保护学习模型的目的。

    基于信誉评估的抗拜占庭攻击的去中心化学习方法及系统

    公开(公告)号:CN116862021A

    公开(公告)日:2023-10-10

    申请号:CN202310953891.1

    申请日:2023-07-31

    IPC分类号: G06N20/00

    摘要: 本发明公开了一种基于信誉评估的抗拜占庭攻击的去中心化学习方法及系统,涉及人工智能与信息安全交叉技术领域,该方法包括:基于获取的分布式网络中各个节点的训练数据,通过不断迭代训练实现去中心化学习,其训练过程中:分布式网络中的每一节点获取自节点的邻居节点当前轮次的局部参数,以此计算每一邻居节点当前轮次的信誉贡献值和信誉损失值,确定信誉有效值,进而确定自节点及其每一邻居节点的全局历史信誉值;基于全局历史信誉值为自节点及其每一邻居节点分配权重,进而更新自节点的局部参数并发送至邻居节点。本发明构建信誉评估机制,建立全局历史信誉值模型,通过权重分配,降低拜占庭攻击的影响,达到保护学习模型的目的。