一种基于DKT与汤普森采样算法的习题推荐方法及系统

    公开(公告)号:CN117743699A

    公开(公告)日:2024-03-22

    申请号:CN202410188406.0

    申请日:2024-02-20

    IPC分类号: G06F16/9536 G06Q50/20

    摘要: 本发明涉及一种基于DKT与汤普森采样算法的习题推荐方法及系统,属于新一代信息技术和在线教育技术领域;本发明将汤普森采样算法与基于用户的协同过滤算法相结合,特别为新用户设计了一种基于用户的协同过滤算法,解决深度知识追踪模型面临的冷启动问题。而且考虑了用户的个人背景和需求进行相关习题的推荐。本发明采用了基于多头注意力机制的知识追踪模型,加入习题类型特征,通过对用户的答题数据和答题结果进行深入分析,准确预测用户对未尝试习题的答题表现以及知识掌握情况。使推荐系统能够动态地调整习题难度和类型,以匹配用户的实际学习进度和能力。

    一种基于DKT与汤普森采样算法的习题推荐方法及系统

    公开(公告)号:CN117743699B

    公开(公告)日:2024-05-14

    申请号:CN202410188406.0

    申请日:2024-02-20

    IPC分类号: G06F16/9536 G06Q50/20

    摘要: 本发明涉及一种基于DKT与汤普森采样算法的习题推荐方法及系统,属于新一代信息技术和在线教育技术领域;本发明将汤普森采样算法与基于用户的协同过滤算法相结合,特别为新用户设计了一种基于用户的协同过滤算法,解决深度知识追踪模型面临的冷启动问题。而且考虑了用户的个人背景和需求进行相关习题的推荐。本发明采用了基于多头注意力机制的知识追踪模型,加入习题类型特征,通过对用户的答题数据和答题结果进行深入分析,准确预测用户对未尝试习题的答题表现以及知识掌握情况。使推荐系统能够动态地调整习题难度和类型,以匹配用户的实际学习进度和能力。