-
公开(公告)号:CN118433396B
公开(公告)日:2024-09-13
申请号:CN202410888157.6
申请日:2024-07-04
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: H04N19/192 , H04N19/176 , H04N19/136 , H04N19/44 , G06T9/00 , G06N3/0464 , G06N3/084
Abstract: 本发明提供了一种多位置特征增强的压缩感知图像重构方法及系统,涉及图像处理技术领域,所述方法包括:获取原始图像;将原始图像输入图像重构模型中进行重构,获得重构图像;其中,所述图像重构模型包括依次连接的采样模块、初始化重构模块和深度重构模块;所述深度重构模块包括多个依次连接的轻型递归重构块;每个轻型递归重构块连接前一个轻型递归重构块输出的重构特征与采样模块输出的采样特征,得到连接特征,对连接特征进行若干次递归重构后,得到递归重构特征,再将递归重构特征与连接特征相连,得到该轻型递归重构块的重构特征。本发明能够在降低计算量的同时提高重构精度。
-
公开(公告)号:CN119130802A
公开(公告)日:2024-12-13
申请号:CN202411612028.0
申请日:2024-11-13
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06T3/4046 , G06V10/80 , G06V10/82 , G06N3/0464
Abstract: 本发明公开一种基于动态卷积和特征融合的图像压缩感知重构方法及系统,涉及图像处理技术领域,该方法为:获取待压缩感知重构的原始图像;将原始图像输入至训练完成的图像压缩感知模型中,经模型中的采样子网和初始化重构子网,进行分块采样并提取初始化重构特征图,初始化重构特征图再输入至模型中的深度重构子网,经并行的动态卷积分支和Transformer分支,分别依次提取多尺度的动态卷积局部特征和全局特征,并通过加权特征融合模块对相同尺度的两特征融合,最终输出图像的融合特征,经重构后,模型输出高质量的重构图像。本发明采用动态卷积和Transformer分支结构,结合特征自适应融合,有效提高重构图像的质量。
-
公开(公告)号:CN118433396A
公开(公告)日:2024-08-02
申请号:CN202410888157.6
申请日:2024-07-04
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: H04N19/192 , H04N19/176 , H04N19/136 , H04N19/44 , G06T9/00 , G06N3/0464 , G06N3/084
Abstract: 本发明提供了一种多位置特征增强的压缩感知图像重构方法及系统,涉及图像处理技术领域,所述方法包括:获取原始图像;将原始图像输入图像重构模型中进行重构,获得重构图像;其中,所述图像重构模型包括依次连接的采样模块、初始化重构模块和深度重构模块;所述深度重构模块包括多个依次连接的轻型递归重构块;每个轻型递归重构块连接前一个轻型递归重构块输出的重构特征与采样模块输出的采样特征,得到连接特征,对连接特征进行若干次递归重构后,得到递归重构特征,再将递归重构特征与连接特征相连,得到该轻型递归重构块的重构特征。本发明能够在降低计算量的同时提高重构精度。
-
-