一种机器人动作生成模型训练方法和动作生成方法

    公开(公告)号:CN119526414A

    公开(公告)日:2025-02-28

    申请号:CN202411871795.3

    申请日:2024-12-18

    Applicant: 同济大学

    Abstract: 本发明涉及一种机器人动作生成模型训练方法和动作生成方法,模型训练步骤包括:构建汽车线束操作数据集,并提取人体姿态;基于所述的数据集和人体姿态构建指令集;预训练运动分词器;获取文本‑动作词汇表;基于所述的数据集、指令集和文本‑动作词汇表预训练语言模型;构建操作数据集,基于操作数据集对预训练后的语言模型进行微调,完成训练。所述的生成方法利用经过模型训练方法训练好的模型输出人形动作序列,并将人形动作序列重定向于机器人上完成机器人动作生成。与现有技术相比,本发明提高了生成模型的泛用性,还可生成更符合汽车线束操作的机器人动作,提高了机器人操作汽车线束的灵活性。

    一种腿部受损的四足机器人运动控制方法

    公开(公告)号:CN118915802A

    公开(公告)日:2024-11-08

    申请号:CN202410971117.8

    申请日:2024-07-19

    Applicant: 同济大学

    Abstract: 本发明涉及一种腿部受损的四足机器人运动控制方法,针对四足机器人构建CPG节律控制器;当四足机器人腿部发生故障时进行四足机器人的正常以及腿部受损四足机器人运动策略进行切换;其中,四足机器人运动策略采用双层强化学习框架:高层强化学习根据当前机器人状态和参考命令生成CPG参数,并生成关节参考轨迹;底层强化学习对生成的参考关节轨迹进行微调,得到目标关节角度;累加关节参考轨迹与目标关节角度,并进一步计算得到当前机器人关节扭矩指令。本发明使机器人能够模仿正常运动及腿部受伤时的步态性质,并通过双层PPO强化学习模型对CPG的参数以及关节角度进行调节,解决了腿部受损四足机器人行走鲁棒性和环境适应性的难题。

    一种基于BIM结构信息的VSLAM定位方法

    公开(公告)号:CN115727854B

    公开(公告)日:2024-11-05

    申请号:CN202211503493.1

    申请日:2022-11-28

    Applicant: 同济大学

    Abstract: 本发明公开了一种基于BIM结构信息的VSLAM定位方法,属于室内定位领域,包括移动智能体、BIM数据库、边缘计算设备、用户接口,移动智能体采集视觉传感器获取的RGB/RGBD图像,控制移动机器人位姿;BIM数据库存储从BIM模型中提取的建筑物三维结构和语义信息;边缘计算设备和移动智能体相连接,包括CAD重建网络和VSLAM算法两个主要线程,通过CAD重建网络求解9‑DoFCAD模型和VSLAM算法求解当前位姿、优化轻量化结构地图;用户接口接收用户命令,获取移动智能体位置,发送移动智能体控制信号并监控边缘计算设备运行情况,本发明利用BIM模型提供的结构化信息为机器人提供准确的定位源,同时避免传统的建图任务,具有轻量化、精度高等优势。

Patent Agency Ranking