一种改进量子粒子群优化的瓦斯信号演化趋势预测方法

    公开(公告)号:CN113887840A

    公开(公告)日:2022-01-04

    申请号:CN202111360147.8

    申请日:2021-11-17

    Abstract: 本发明提出一种改进量子粒子群优化的瓦斯信号演化趋势预测方法,涉及瓦斯信号预测领域,通过井下瓦斯传感器收集瓦斯信号时间序列数据,形成瓦斯信号时间序列库;对存储到瓦斯信号时间序列库中的瓦斯信号数据进行小波去噪预处理;基于最小微熵率法同时计算瓦斯信号时间序列的延迟时间τ和嵌入维数m;将处理后的瓦斯信号序列基于改进的量子粒子群算法预测瓦斯信号演化趋势;利用改进的量子粒子群算法优化Elman算法的权值和阈值ω和θ,利用Elman算法具有动态反馈环节的优越性,与Elman有机结合改进传统粒子群优化算法易陷入局部最优解的算法缺陷,实现煤矿回采工作面瓦斯信号演化趋势的准确动态预测。

    一种改进量子粒子群优化的瓦斯信号演化趋势预测方法

    公开(公告)号:CN113887840B

    公开(公告)日:2024-08-02

    申请号:CN202111360147.8

    申请日:2021-11-17

    Abstract: 本发明提出一种改进量子粒子群优化的瓦斯信号演化趋势预测方法,涉及瓦斯信号预测领域,通过井下瓦斯传感器收集瓦斯信号时间序列数据,形成瓦斯信号时间序列库;对存储到瓦斯信号时间序列库中的瓦斯信号数据进行小波去噪预处理;基于最小微熵率法同时计算瓦斯信号时间序列的延迟时间τ和嵌入维数m;将处理后的瓦斯信号序列基于改进的量子粒子群算法预测瓦斯信号演化趋势;利用改进的量子粒子群算法优化Elman算法的权值和阈值ω和θ,利用Elman算法具有动态反馈环节的优越性,与Elman有机结合改进传统粒子群优化算法易陷入局部最优解的算法缺陷,实现煤矿回采工作面瓦斯信号演化趋势的准确动态预测。

Patent Agency Ranking