-
公开(公告)号:CN116756657B
公开(公告)日:2023-11-17
申请号:CN202311031625.X
申请日:2023-08-16
Applicant: 成都信息工程大学
IPC: G06F18/2415 , G06F18/25 , G06F18/10 , G06N3/0464 , G06N3/0455 , G06N3/047 , G06N3/0499 , G06N3/048 , G06N3/084 , G06F123/02
Abstract: 本发明公开了一种基于CNN和Transformer的fNIRS脑力负荷检测方法,其包括获取fNIRS采集设备采集的原始数据,并对原始数据进行预处理得到氧合血红蛋白和脱氧血红蛋白浓度的信号#imgabs0#和#imgabs1#;对信号#imgabs2#和#imgabs3#进行一维卷积操作,并在通道维度上对卷积操作后的两个信号进行组合,得到组合信号Hb;采用卷积神经网络对组合信号Hb进行局部细粒度时间特征的提取,得到特征矩阵;采用Transformer模块对特征矩阵进行特征增强提取,得到状态特征;将状态特征输入多层感知机分类层,得到脑力负荷检测的分类结果。
-
公开(公告)号:CN116756657A
公开(公告)日:2023-09-15
申请号:CN202311031625.X
申请日:2023-08-16
Applicant: 成都信息工程大学
IPC: G06F18/2415 , G06F18/25 , G06F18/10 , G06N3/0464 , G06N3/0455 , G06N3/047 , G06N3/0499 , G06N3/048 , G06N3/084 , G06F123/02
Abstract: 本发明公开了一种基于CNN和Transformer的fNIRS脑力负荷检测方法,其包括获取fNIRS采集设备采集的原始数据,并对原始数据进行预处理得到氧合血红蛋白和脱氧血红蛋白浓度的信号#imgabs0#和#imgabs1#;对信号#imgabs2#和#imgabs3#进行一维卷积操作,并在通道维度上对卷积操作后的两个信号进行组合,得到组合信号Hb;采用卷积神经网络对组合信号Hb进行局部细粒度时间特征的提取,得到特征矩阵;采用Transformer模块对特征矩阵进行特征增强提取,得到状态特征;将状态特征输入多层感知机分类层,得到脑力负荷检测的分类结果。
-