-
公开(公告)号:CN118171275A
公开(公告)日:2024-06-11
申请号:CN202410598914.6
申请日:2024-05-15
申请人: 暨南大学 , 广州新科佳都科技有限公司 , 广州方纬智慧大脑研究开发有限公司
IPC分类号: G06F21/56 , G06F18/241 , G06N3/0442 , G06N3/0455 , G06N3/048 , G06N3/0895 , G06F123/02
摘要: 本发明公开了一种基于自监督箱型分类的智能交通车辆安全检测方法及系统,包括:采集智能交通数据集Car Hacking并进行数据预处理,提取时序特征数据,剔除不相关特征;基于LSTM自监督箱型分类模型和智能交通车辆入侵检测模型构建初始智能交通车辆安全检测模型;利用时序特征数据,对初始智能交通车辆安全检测模型进行训练,将达到预设训练精度的智能交通车辆安全检测模型进行测试,验证自监督箱型分类方法的有效性,并评估模型对于识别未知攻击类型的性能,构建获得基于自监督箱型分类的目标智能交通车辆安全检测模型来进行车辆安全监测,获得检测结果。本发明提高了安全检测的准确性和可靠性。
-
公开(公告)号:CN118171275B
公开(公告)日:2024-07-30
申请号:CN202410598914.6
申请日:2024-05-15
申请人: 暨南大学 , 广州新科佳都科技有限公司 , 广州方纬智慧大脑研究开发有限公司
IPC分类号: G06F21/56 , G06F18/241 , G06N3/0442 , G06N3/0455 , G06N3/048 , G06N3/0895 , G06F123/02
摘要: 本发明公开了一种基于自监督箱型分类的智能交通车辆安全检测方法及系统,包括:采集智能交通数据集Car Hacking并进行数据预处理,提取时序特征数据,剔除不相关特征;基于LSTM自监督箱型分类模型和智能交通车辆入侵检测模型构建初始智能交通车辆安全检测模型;利用时序特征数据,对初始智能交通车辆安全检测模型进行训练,将达到预设训练精度的智能交通车辆安全检测模型进行测试,验证自监督箱型分类方法的有效性,并评估模型对于识别未知攻击类型的性能,构建获得基于自监督箱型分类的目标智能交通车辆安全检测模型来进行车辆安全监测,获得检测结果。本发明提高了安全检测的准确性和可靠性。
-
公开(公告)号:CN115101145B
公开(公告)日:2024-09-17
申请号:CN202210737270.5
申请日:2022-06-27
申请人: 暨南大学
IPC分类号: G16C20/50 , G06F18/241 , G06N3/0464 , G06N3/084 , G06N3/045 , G06N3/042 , G06N3/0895 , G16C20/70
摘要: 本发明公开了一种基于自适应元学习的药物虚拟筛选方法及系统,包括以下步骤:S1、对公开数据库的药物分子数据进行预处理获得分子图数据并划分T个数据集;S2、构建基于元学习器的多任务神经网络模型;S3、利用上述数据集对神经网络模型进行预训练,得到药物虚拟筛选模型;S4、输入任务目标的数据到上述药物虚拟筛选模型,对任务的权重进行调整,添加目标任务相关的预测层,得到与目标任务强相关的药物虚拟筛选模型。本方法与基于深度学习的药物筛选方法相比,利用元学习器对模型进行任务权重上的调整,通过添加目标任务相关的预测层,能够自适应调整模型,使药物虚拟筛选模型达成更好的泛化性能,能够筛选出具有足够活性且符合要求的药物分子。
-
公开(公告)号:CN117540104B
公开(公告)日:2024-08-02
申请号:CN202311762184.0
申请日:2023-12-20
申请人: 暨南大学
IPC分类号: G06F16/9535 , G06N3/0895 , G06N5/022 , G06Q50/20 , G06F16/906
摘要: 本发明公开了一种基于图神经网络的学习群体差异评价方法与系统,包括:获取学习者做题的历史交互信息,对历史交互信息进行处理,得到知识点群体和知识点群体构成的潜在交互序列;根据知识点群体和知识点群体构成的潜在交互序列对学习者群体进行聚类,得到学习者群体;计算所述学习者群体之间的差异,得到群体差异量化结果;将群体差异量化结果输入循环神经网络模块进行训练,得到训练完毕的学习群体差异评价模型;将学习者做题的交互信息输入至模型,得到学习者学习能力评估结果。本申请与传统技术相比,能实现数据驱动的群体动态分组,精准评估群体学习情况,输出不同层次学习者群体的学习能力评价结果,以便制定更有效的后续教育计划。
-
公开(公告)号:CN118194357A
公开(公告)日:2024-06-14
申请号:CN202410605553.3
申请日:2024-05-16
申请人: 暨南大学 , 深圳市方直科技股份有限公司 , 深圳市木愚科技有限公司
摘要: 本发明提出了一种基于扩散去噪模型的隐私数据发布方法,包括:构建教育数据集,其中,所述教育数据集包括:隐私属性集和非隐私属性集;基于隐私预算,对所述隐私属性集进行PRAM预扰动;基于PRAM预扰动后的数据对预设的数据生成模型进行训练;基于训练后的数据生成模型进行采样,生成包含特定数量的数据记录作为合成数据集。本发明在可以在满足本地差分隐私定义的情况下,生成数据效用良好的教育类数据集,适用于各类教育数据应用场景。与一般的基于深度生成式模型的隐私数据发布方法相比,该方案可以实现更好的隐私‑效用权衡。
-
公开(公告)号:CN117272881B
公开(公告)日:2024-03-12
申请号:CN202311556851.X
申请日:2023-11-21
申请人: 暨南大学
IPC分类号: G06F30/32 , G06F30/337
摘要: 本发明公开了一种基于标记句式决策图的电路简化方法及系统,包括以下步骤:S1、将电子电路转换为布尔逻辑表达式;S2、采用标记句式决策图表征布尔逻辑表达式;S3、对标记句式决策图进行约简;S4、根据约简后的标记句式决策图更新布尔逻辑表达式;S5、根据更新后的布尔逻辑表达式设计简化后的电子电路。本申请与传统技术相比,将电子电路转化为标记句式决策图,通过对标记句式决策图进行约简从而达成简化电子电路的目的,采用的复合规则的二元关系最小化方法能够避免决策图约简过程中出现的规模较大、定义冲突与内存冗余的问题,同时可以更加稳定高效地简化电路,具有良好的应用前景。
-
公开(公告)号:CN114038517B
公开(公告)日:2024-11-15
申请号:CN202110983302.5
申请日:2021-08-25
申请人: 暨南大学
IPC分类号: G16C20/70 , G16C20/20 , G06N3/042 , G06N3/0895 , G06N3/0464 , G06N3/0442
-
公开(公告)号:CN117273453A
公开(公告)日:2023-12-22
申请号:CN202311273132.7
申请日:2023-09-27
申请人: 暨南大学
IPC分类号: G06Q10/0635 , G06F18/24 , G06F18/214
摘要: 本发明公开了一种智能网联汽车汽车风险评估方法及系统,包括以下步骤:S1、获取车辆的数据流向;S2、对车辆的数据流向进行整理分类,分析得到若干一阶风险,将一阶风险的子风险设定为二阶风险;S3、根据二阶风险的相对重要性指标,计算出各一阶风险内部的二阶风险之间的相对权重区间以及各一阶风险之间的相对权重区间,并对所得的相对权重区间进行调整拟合;S4、根据调整拟合后的相对权重区间计算汽车当前的风险等级。本方法与传统技术相比,将汽车风险的一阶风险进一步量化为二阶风险,大大提高了风险评估的准确性。
-
公开(公告)号:CN117272881A
公开(公告)日:2023-12-22
申请号:CN202311556851.X
申请日:2023-11-21
申请人: 暨南大学
IPC分类号: G06F30/32 , G06F30/337
摘要: 本发明公开了一种基于标记句式决策图的电路简化方法及系统,包括以下步骤:S1、将电子电路转换为布尔逻辑表达式;S2、采用标记句式决策图表征布尔逻辑表达式;S3、对标记句式决策图进行约简;S4、根据约简后的标记句式决策图更新布尔逻辑表达式;S5、根据更新后的布尔逻辑表达式设计简化后的电子电路。本申请与传统技术相比,将电子电路转化为标记句式决策图,通过对标记句式决策图进行约简从而达成简化电子电路的目的,采用的复合规则的二元关系最小化方法能够避免决策图约简过程中出现的规模较大、定义冲突与内存冗余的问题,同时可以更加稳定高效地简化电路,具有良好的应用前景。
-
公开(公告)号:CN117035212A
公开(公告)日:2023-11-10
申请号:CN202311013539.6
申请日:2023-08-11
申请人: 暨南大学
IPC分类号: G06Q10/047 , G06F18/241 , G06F18/214 , G06N3/048
摘要: 本发明公开了一种路径规划状态可达性智能预测方法及系统,包括以下步骤:读取路径规划域与路径规划问题的PDDL文件得到状态数据;对状态数据进行编码,得到该路径规划问题的状态数据模板;遍历该路径规划问题的所有可达状态,得到可达状态数据集;批量枚举生成状态,依次与所述可达状态数据集对比,选取其中路径不为可达状态且不重复的状态,得到不可达状态数据集;对预设的状态可达性智能分类模型进行训练,得到训练好的状态可达性智能分类模型;将状态数据输入至训练好的状态可达性智能分类模型,模型输出状态可达性结果。本方法与传统技术相比,使用机器学习分类方法训练路径规划状态可达性验证模型,大大提高了状态数据可达性验证和预测的速度。
-
-
-
-
-
-
-
-
-