-
公开(公告)号:CN115222998A
公开(公告)日:2022-10-21
申请号:CN202211120458.1
申请日:2022-09-15
申请人: 杭州电子科技大学 , 浙江大华技术股份有限公司
发明人: 颜成钢 , 殷俊 , 颜拥 , 王洪波 , 胡冀 , 熊剑平 , 李亮 , 郑博仑 , 林聚财 , 孔书晗 , 王亚运 , 孙垚棋 , 金恒 , 朱尊杰 , 高宇涵 , 殷海兵 , 王鸿奎 , 陈楚翘 , 刘一秀 , 李文超 , 王廷宇 , 张勇东 , 张继勇
IPC分类号: G06V10/764 , G06V10/30 , G06V10/40 , G06V10/774 , G06V10/82 , G06N3/04 , G06N3/08
摘要: 本发明公开了一种图像分类方法。首先构建通道维度注意力网络和空间维度多尺度自注意力网络;然后将输入图像预处理后输入通道维度注意力网络,生成基于通道维度的注意力特征图;将基于通道维度的注意力特征图输入至空间维度的多尺度自注意力网络,生成基于特征图空间维度的多尺度自注意力特征图;最后将最终生成的多维度多尺度注意力特征图输入到分类器单元中,将模型输出的向量转换成概率表示,完成图像分类。本发明设计了一种新的多尺度自注意力机制,它利用一系列的深度可分离卷积操作,生成特征信息高度相关的局部特征图和区域特征图,不但可以强化自注意力机制的细粒度特征提取能力,还可以高效的提取有效的全局信息。
-
公开(公告)号:CN115222998B
公开(公告)日:2023-01-03
申请号:CN202211120458.1
申请日:2022-09-15
申请人: 杭州电子科技大学 , 浙江大华技术股份有限公司
发明人: 颜成钢 , 殷俊 , 颜拥 , 王洪波 , 胡冀 , 熊剑平 , 李亮 , 郑博仑 , 林聚财 , 孔书晗 , 王亚运 , 孙垚棋 , 金恒 , 朱尊杰 , 高宇涵 , 殷海兵 , 王鸿奎 , 陈楚翘 , 刘一秀 , 李文超 , 王廷宇 , 张勇东 , 张继勇
IPC分类号: G06V10/764 , G06V10/30 , G06V10/40 , G06V10/774 , G06V10/82 , G06N3/04 , G06N3/08
摘要: 本发明公开了一种图像分类方法。首先构建通道维度注意力网络和空间维度多尺度自注意力网络;然后将输入图像预处理后输入通道维度注意力网络,生成基于通道维度的注意力特征图;将基于通道维度的注意力特征图输入至空间维度的多尺度自注意力网络,生成基于特征图空间维度的多尺度自注意力特征图;最后将最终生成的多维度多尺度注意力特征图输入到分类器单元中,将模型输出的向量转换成概率表示,完成图像分类。本发明设计了一种新的多尺度自注意力机制,它利用一系列的深度可分离卷积操作,生成特征信息高度相关的局部特征图和区域特征图,不但可以强化自注意力机制的细粒度特征提取能力,还可以高效的提取有效的全局信息。
-
公开(公告)号:CN111125551B
公开(公告)日:2021-04-06
申请号:CN201911097403.1
申请日:2019-11-12
申请人: 杭州电子科技大学
IPC分类号: G06F16/9537 , G06F17/18 , G06Q50/00
摘要: 本发明提供一种基于选择记忆的马尔可夫模型的用户位置预测方法。本发明基于传统马尔可夫模型,汲取循环神经网络模型的思想,在保留马尔可夫模型优点的前提下,增加选择记忆单元,解决马尔可夫模型本身的缺陷,即假设未来状态只与当前状态相关,与其他历史状态相互独立。本发明方法保留了传统马尔可夫模型运算简单,速度快的优势的基础上,通过选择记忆单元大幅度提升了预测的精度,在速度远快于RNN预测模型的前提下,可以取的与一般RNN预测模型近似的预测精度。
-
公开(公告)号:CN114119517A
公开(公告)日:2022-03-01
申请号:CN202111346998.7
申请日:2021-11-15
申请人: 杭州电子科技大学
摘要: 本发明公开了一种联合病理与拓扑信息的神经病理hub节点识别方法,首先确定脑网络的基本数学模型;然后定义神经病理电势与神经病理电势差,再定义全脑网络的神经病理电势差;构建神经病理hub识别的能量函数,确定神经病理hub识别的最优化方法;最后预处理真实的神经影像数据,执行优化算法求取神经病理hub;本发明联合分析神经病理hub在脑网络拓扑结构中的作用以及神经病理负荷在神经病理hub处分布的特征表现,识别出具有高神经病理电势的hub节点,解决了传统hub识别方法仅考虑hub节点在网络结构中的拓扑特征的局限性。
-
公开(公告)号:CN111125551A
公开(公告)日:2020-05-08
申请号:CN201911097403.1
申请日:2019-11-12
申请人: 杭州电子科技大学
IPC分类号: G06F16/9537 , G06F17/18 , G06Q50/00
摘要: 本发明提供一种基于选择记忆的马尔可夫模型的用户位置预测方法。本发明基于传统马尔可夫模型,汲取循环神经网络模型的思想,在保留马尔可夫模型优点的前提下,增加选择记忆单元,解决马尔可夫模型本身的缺陷,即假设未来状态只与当前状态相关,与其他历史状态相互独立。本发明方法保留了传统马尔可夫模型运算简单,速度快的优势的基础上,通过选择记忆单元大幅度提升了预测的精度,在速度远快于RNN预测模型的前提下,可以取的与一般RNN预测模型近似的预测精度。
-
公开(公告)号:CN116306828A
公开(公告)日:2023-06-23
申请号:CN202310210826.X
申请日:2023-03-07
申请人: 杭州电子科技大学丽水研究院
摘要: 本发明公开了一种基于图同构神经网络的脑网络链接预测方法,首先对于脑网络数据进行处理,完成脑结构网络建模;再构建基于图同构神经网络的脑网络链接预测模型,包括子图提取模块和图同构神经网络模块;之后进行脑网络链接预测模型的训练和测试;最后通过训练完成的脑网络链接预测模型完成脑网络链接预测。本发明在实现较为高的准确率的基础上降低了时间成本,极大的提升了模型对于子图结构的学习能力,对于接下来的链接预测有十分重要的意义。
-
公开(公告)号:CN115631810A
公开(公告)日:2023-01-20
申请号:CN202211274910.X
申请日:2022-10-18
申请人: 杭州电子科技大学
摘要: 本发明公开了一种基于流的图同构自回归分子生成方法。首先进行数据预处理;构建基于流的图同构自回归分子生成模;通过预处理后的数据对分子生成模型进行训练;最后通过训练好的分子生成模型完成分子生成。本发明针对分子生成问题,采取了基于流的自回归生成模型,通过多层感知机求出基分布和现实数据分布之间的可逆变换,从而在提高了模型的灵活性同时,因其迭代的采样过程,使得可以在节点和边的生成过程中引入价态检验,这大大提高了所生成分子的现实意义。采用了图神经网络表征能力达到上限的图同构神经网络GIN来进行分子图的表示学习,极大的提升了模型对于分子图结构的学习能力。
-
-
-
-
-
-