基于深度神经网络模型的轻量化部署图像处理方法

    公开(公告)号:CN117521742A

    公开(公告)日:2024-02-06

    申请号:CN202311319045.0

    申请日:2023-10-12

    Applicant: 汕头大学

    Abstract: 本发明公开了基于深度神经网络模型的轻量化部署图像处理方法,方法包括:获取待处理图像,通过训练好的改进神经网络模型对待处理图像进行图像处理,得到待处理图像的目标区域;模型包括用于对待处理图像进行分组卷积,得到待编码特征图的分组输入模块、用于对待编码特征图进行下采样和卷积处理的编码器模块、用于对编码器模块的输出进行上采样和转置卷积处理,得到待重塑特征图的解码器模块和用于对待重塑特征图进行分组重塑,得到待处理图像的目标区域的重塑输出模块。本发明显著降低了神经网络模型的参量和部署成本,实现模型的轻量化部署,并提高了模型在图像处理任务上的处理效果和效率,可应用于如图像分割、目标识别等图像处理任务。

    一种面向轻量化部署的建筑物火灾识别方法及系统

    公开(公告)号:CN117333808A

    公开(公告)日:2024-01-02

    申请号:CN202311185429.8

    申请日:2023-09-13

    Abstract: 本发明应用于火灾检测技术领域,公开了一种面向轻量化部署的建筑物火灾识别方法及系统,方法包括:利用改进神经网络模型对待测建筑物的环境图像进行火灾检测,得到火灾检测信息;根据待测建筑物的环境信息和火灾检测信息生成火灾检测结果;模型包括主干网络、中间网络和预测模块,主干网络对环境图像进行特征提取以得到待测特征图和第二特征图,中间网络对待测特征图进行特征增强,根据增强的待测特征图和第二特征图生成目标候选区域;预测模块根据目标候选区域输出火灾检测信息。本发明实现了轻量化部署,降低了检测成本,提高了模型对小目标物体检测的敏感度,能够在遮挡和重叠目标的复杂场景下实现火灾检测,提高火灾检测精度和效率。

    基于深度神经网络模型的轻量化部署图像处理方法

    公开(公告)号:CN117521742B

    公开(公告)日:2024-04-30

    申请号:CN202311319045.0

    申请日:2023-10-12

    Applicant: 汕头大学

    Abstract: 本发明公开了基于深度神经网络模型的轻量化部署图像处理方法,方法包括:获取待处理图像,通过训练好的改进神经网络模型对待处理图像进行图像处理,得到待处理图像的目标区域;模型包括用于对待处理图像进行分组卷积,得到待编码特征图的分组输入模块、用于对待编码特征图进行下采样和卷积处理的编码器模块、用于对编码器模块的输出进行上采样和转置卷积处理,得到待重塑特征图的解码器模块和用于对待重塑特征图进行分组重塑,得到待处理图像的目标区域的重塑输出模块。本发明显著降低了神经网络模型的参量和部署成本,实现模型的轻量化部署,并提高了模型在图像处理任务上的处理效果和效率,可应用于如图像分割、目标识别等图像处理任务。

    一种面向轻量化部署的建筑物火灾识别方法及系统

    公开(公告)号:CN117333808B

    公开(公告)日:2024-04-30

    申请号:CN202311185429.8

    申请日:2023-09-13

    Abstract: 本发明应用于火灾检测技术领域,公开了一种面向轻量化部署的建筑物火灾识别方法及系统,方法包括:利用改进神经网络模型对待测建筑物的环境图像进行火灾检测,得到火灾检测信息;根据待测建筑物的环境信息和火灾检测信息生成火灾检测结果;模型包括主干网络、中间网络和预测模块,主干网络对环境图像进行特征提取以得到待测特征图和第二特征图,中间网络对待测特征图进行特征增强,根据增强的待测特征图和第二特征图生成目标候选区域;预测模块根据目标候选区域输出火灾检测信息。本发明实现了轻量化部署,降低了检测成本,提高了模型对小目标物体检测的敏感度,能够在遮挡和重叠目标的复杂场景下实现火灾检测,提高火灾检测精度和效率。

Patent Agency Ranking