多星座基准站间模糊度快速解算方法及其应用

    公开(公告)号:CN108490469B

    公开(公告)日:2022-01-11

    申请号:CN201810084418.3

    申请日:2018-01-29

    IPC分类号: G01S19/44 G01S19/28

    摘要: 本发明公开了一种基于模糊度紧约束的多星座基准站间模糊度快速解算方法及其应用,首先根据卫星截止高度角、模糊度浮点解偏差和持续滤波次数确定易于固定的卫星;然后对易于固定的卫星利用部分模糊度固定策略,以模糊度方差大小作为筛选标准,模糊度固定成功率和Ratio值为阈值,选出模糊度最优子集;最后采用构建“伪”观测方程的方式,将最优子集中的模糊度施加紧约束至固定解,更新滤波方程,固定所有卫星模糊度。使用本发明所提出的方法,可显著提高模糊度固定的先验成功率及Ratio值,缩短基准站间初始化时间,加快了新升起卫星的收敛速度,为网络RTK用户提供了更多的可用卫星。

    基于模糊度紧约束的多星座基准站间模糊度快速解算方法及其应用

    公开(公告)号:CN108490469A

    公开(公告)日:2018-09-04

    申请号:CN201810084418.3

    申请日:2018-01-29

    IPC分类号: G01S19/44 G01S19/28

    摘要: 本发明公开了一种基于模糊度紧约束的多星座基准站间模糊度快速解算方法及其应用,首先根据卫星截止高度角、模糊度浮点解偏差和持续滤波次数确定易于固定的卫星;然后对易于固定的卫星利用部分模糊度固定策略,以模糊度方差大小作为筛选标准,模糊度固定成功率和Ratio值为阈值,选出模糊度最优子集;最后采用构建“伪”观测方程的方式,将最优子集中的模糊度施加紧约束至固定解,更新滤波方程,固定所有卫星模糊度。使用本发明所提出的方法,可显著提高模糊度固定的先验成功率及Ratio值,缩短基准站间初始化时间,加快了新升起卫星的收敛速度,为网络RTK用户提供了更多的可用卫星。

    基于速度约束的低成本接收机平滑RTD算法及其应用

    公开(公告)号:CN108508462A

    公开(公告)日:2018-09-07

    申请号:CN201810083803.6

    申请日:2018-01-29

    IPC分类号: G01S19/37

    摘要: 本发明公开了一种基于速度约束的低成本接收机平滑RTD算法及其应用,首先利用多普勒观测值求解速度分量;然后利用已获得的速度分量作为伪观测值联合伪距观测值建立抗差卡尔曼滤波器约束滤波位置解;采用相位平滑伪距的方法来提高伪距观测值的精度,并利用多普勒观测值对接收机的速度和方向进行了约束,联合伪距和速度伪观测值建立抗差卡尔曼滤波器进行实时动态解算。结果表明:该算法可以保证低成本接收机的快速、可靠定位,开阔环境下基本达到了亚米级的定位精度,可以保证2米以内的可靠定位;复杂环境下,也基本可以保证5m以内的定位精度,该算法应用于全球定位系统中。

    附加正交函数拟合条件的约束滤波解算方法及装置

    公开(公告)号:CN108562917B

    公开(公告)日:2021-09-28

    申请号:CN201810314558.5

    申请日:2018-04-09

    IPC分类号: G01S19/29 G01S19/30 G01S19/27

    摘要: 本发明公开了一种附加正交函数拟合条件的约束滤波解算方法和装置。方法包括:获取码伪距和多普勒观测值;根据码伪距和多普勒观测值,形成单点定位观测误差方程;利用上一时刻位置速度的状态估值建立系统匀速运动状态模型;根据单点定位观测误差方程和系统匀速运动状态模型建立抗差自适应滤波模型,由抗差自适应滤波模型得到当前状态初始估值;利用正交函数拟合先前时刻状态估值并建立约束条件,由约束条件对当前状态初始估值进行约束修正。可以在不增加成本的前提下,充分利用接收机先前运动信息,挖掘新的尚可利用的约束条件,使在不良遮挡环境中,可视卫星空间分布不佳的条件下,也能极大地缩小定位偏移,平滑接收机的运动轨迹,提高定位结果的准确度,增强滤波的稳定性。

    附加正交函数拟合条件的约束滤波解算方法及装置

    公开(公告)号:CN108562917A

    公开(公告)日:2018-09-21

    申请号:CN201810314558.5

    申请日:2018-04-09

    IPC分类号: G01S19/29 G01S19/30 G01S19/27

    摘要: 本发明公开了一种附加正交函数拟合条件的约束滤波解算方法和装置。方法包括:获取码伪距和多普勒观测值;根据码伪距和多普勒观测值,形成单点定位观测误差方程;利用上一时刻位置速度的状态估值建立系统匀速运动状态模型;根据单点定位观测误差方程和系统匀速运动状态模型建立抗差自适应滤波模型,由抗差自适应滤波模型得到当前状态初始估值;利用正交函数拟合先前时刻状态估值并建立约束条件,由约束条件对当前状态初始估值进行约束修正。可以在不增加成本的前提下,充分利用接收机先前运动信息,挖掘新的尚可利用的约束条件,使在不良遮挡环境中,可视卫星空间分布不佳的条件下,也能极大地缩小定位偏移,平滑接收机的运动轨迹,提高定位结果的准确度,增强滤波的稳定性。