一种基于卷积时序网络的脑电信号发声检测方法

    公开(公告)号:CN117688372A

    公开(公告)日:2024-03-12

    申请号:CN202311672981.X

    申请日:2023-12-07

    申请人: 浙江大学

    摘要: 本发明公开了一种基于卷积时序网络的脑电信号发声检测方法,包括:对原始脑电数据进行时频分析,作为神经特征;使用希尔伯特变换对音频数据进行包络分析,通过阈值分割进行标注,得到语音特征,对齐语音特征和神经特征;构建发声检测卷积时序网络,使用对齐后的神经特征作为输入数据,对齐后的语音特征作为真值标签构建数据集,对发声检测卷积时序网络进行训练;将待检测脑电信号经过时频分析输入到训练好的卷积时序发声检测器中,预测发音状态,进行脑电信号的发声检测。本发明取得了优于目前常用发声检测器的性能,同时本发明对检测器的检测性能做出解释,有效地改善了现有基于神经网络的发声检测方法的不可解释的问题。