基于深度学习和时空要素的雷达非降水回波质控方法

    公开(公告)号:CN117930243A

    公开(公告)日:2024-04-26

    申请号:CN202410110456.7

    申请日:2024-01-26

    摘要: 本发明公开了基于深度学习和时空要素的雷达非降水回波质控方法,包括:S1:收集用于训练样本的雷达基数据;S2:将收集的雷达基数据进行极坐标系列到笛卡尔坐标系的转换,制成RGB雷达图像;S3:对RGB雷达图像中的每一个像素进行手工标记,将非降水回波分成不同种类;S4:将标记后的RGB雷达图像裁剪成特定像素的图片后作为训练样本数据集;S5:采用DeeplabV3+模型训练样本数据集;S6:使用混淆矩阵平均交并比评分对模型精度进行评价;S7:使用训练完成的DeeplabV3+模型对其他雷达回波做非降水回波的识别。本发明通过手工标注和深度学习DeeplabV3+模型结合建立训练数据集,再使用混淆矩阵平均交并比对模型精度进行评价,可以提高对雷达非降水回波质控的准确性和可靠性。