基于机器学习的智能无人设备组网异常检测方法及系统

    公开(公告)号:CN113382413A

    公开(公告)日:2021-09-10

    申请号:CN202110634005.X

    申请日:2021-06-07

    Abstract: 基于机器学习的智能无人设备组网异常检测方法及系统,检测方法包括:获取智能无人设备组网中每一辆智能无人设备的行驶数据和组网中相互通信所产生的网络数据,抽取不同特征的数据以表示智能无人设备组网在行驶过程中的行驶状态和网络状态,并将其转化为特征向量;对特征向量进行降维,并对降维后的特征向量根据密度分布进行智能无人设备的行驶事件聚类,将智能无人设备组网中各智能无人设备的行驶事件划分为正常事件和异常事件;针对划分后的行驶事件,将对应的特征向量整合成相应的矩阵输入机器学习模型中,学习正常事件和异常事件的特征,再利用模型对智能无人设备组网实现异常检测。本发明结合了行驶数据和网络数据,能实现高效的异常检测。

    基于机器学习的智能无人设备组网异常检测方法及系统

    公开(公告)号:CN113382413B

    公开(公告)日:2022-09-27

    申请号:CN202110634005.X

    申请日:2021-06-07

    Abstract: 基于机器学习的智能无人设备组网异常检测方法及系统,检测方法包括:获取智能无人设备组网中每一辆智能无人设备的行驶数据和组网中相互通信所产生的网络数据,抽取不同特征的数据以表示智能无人设备组网在行驶过程中的行驶状态和网络状态,并将其转化为特征向量;对特征向量进行降维,并对降维后的特征向量根据密度分布进行智能无人设备的行驶事件聚类,将智能无人设备组网中各智能无人设备的行驶事件划分为正常事件和异常事件;针对划分后的行驶事件,将对应的特征向量整合成相应的矩阵输入机器学习模型中,学习正常事件和异常事件的特征,再利用模型对智能无人设备组网实现异常检测。本发明结合了行驶数据和网络数据,能实现高效的异常检测。

Patent Agency Ranking