基于线性组合的潮流方程线性化方法

    公开(公告)号:CN111799802B

    公开(公告)日:2023-12-05

    申请号:CN202010711576.4

    申请日:2020-07-22

    IPC分类号: H02J3/06

    摘要: 本发明公开基于线性组合的潮流方程线性化方法,包括以下步骤:1)基于非线性潮流方程,依次建立线性潮流方程的通用表达式和常用表达式;2)基于线性潮流方程的常用表达式,建立减小误差后的线性潮流新方程;3)获取电网运行数据,并建立决策变量优化模型,计算得到令潮流方程线性化误差最小的决策变量;4)基于令潮流方程线性化误差最小的决策变量,更新减小误差后的线性潮流新方程,得到误差最小的最优线性近似模型。本发明所提出的潮流方程线性化新形式,相比于其他线性潮流方程,能够更加有效地降低线性化误差。并且在不同节点系统中均应用效果良好,具有较强的普适性。

    一种基于深度学习的快速安全约束经济调度方法

    公开(公告)号:CN109784692A

    公开(公告)日:2019-05-21

    申请号:CN201811631297.6

    申请日:2018-12-29

    IPC分类号: G06Q10/06 G06Q50/06

    摘要: 本发明公开了一种基于深度学习的快速安全约束经济调度方法,主要步骤为:1)确定适用于安全约束经济调度模型的深度神经网络。2)对堆栈降噪自动编码器SDAE进行训练。3)建立基于深度学习的安全约束经济调度模型。4)令k=1,将电力系统运行条件输入到深度神经网络中,得到安全约束经济调度模型的起作用约束集J(1)。5)将约束集J(1)。输入到安全约束经济调度模型中,得到安全约束经济调度方案。6)对安全约束经济调度方案进行N-1检验,若有新约束J(new),则令k=k+1,约束集更新为J(k)=J(k)∪J(new),并返回步骤5。若无新约束,则输出安全约束经济调度方案。本发明可广泛应用于电力系统各个行业的安全约束经济调度分析。

    基于堆栈降噪自动编码器的电力系统概率最优潮流计算方法

    公开(公告)号:CN109599872A

    公开(公告)日:2019-04-09

    申请号:CN201811633643.4

    申请日:2018-12-29

    IPC分类号: H02J3/06

    摘要: 本发明公开了基于堆栈降噪自动编码器的电力系统概率最优潮流计算方法,主要步骤为:1)建立SDAE最优潮流模型。2)获取SDAE最优潮流模型输入层的输入样本X。3)对SDAE最优潮流模型进行初始化。4)对SDAE最优潮流模型进行训练,从而得到训练后的SDAE最优潮流模型。5)采用MCS法对待计算概率潮流的电力系统的随机变量进行抽样,从而获取计算样本。6)将步骤5得到的训练样本数据一次性输入步骤4中训练完成的SDAE最优潮流模型中,从而计算出最优潮流在线概率。7)对所述最优潮流在线概率进行分析,即绘制SDAE最优潮流模型的输出变量的概率密度曲线。本发明可广泛应用于电力系统的概率最优潮流求解,特别适用于新能源渗透率高导致系统不确定性增强的在线分析情况。

    基于线性组合的潮流方程线性化方法

    公开(公告)号:CN111799802A

    公开(公告)日:2020-10-20

    申请号:CN202010711576.4

    申请日:2020-07-22

    IPC分类号: H02J3/06

    摘要: 本发明公开基于线性组合的潮流方程线性化方法,包括以下步骤:1)基于非线性潮流方程,依次建立线性潮流方程的通用表达式和常用表达式;2)基于线性潮流方程的常用表达式,建立减小误差后的线性潮流新方程;3)获取电网运行数据,并建立决策变量优化模型,计算得到令潮流方程线性化误差最小的决策变量;4)基于令潮流方程线性化误差最小的决策变量,更新减小误差后的线性潮流新方程,得到误差最小的最优线性近似模型。本发明所提出的潮流方程线性化新形式,相比于其他线性潮流方程,能够更加有效地降低线性化误差。并且在不同节点系统中均应用效果良好,具有较强的普适性。

    基于堆栈降噪自动编码器的电力系统概率潮流计算方法

    公开(公告)号:CN109599872B

    公开(公告)日:2022-11-08

    申请号:CN201811633643.4

    申请日:2018-12-29

    IPC分类号: H02J3/06

    摘要: 本发明公开了基于堆栈降噪自动编码器的电力系统概率最优潮流计算方法,主要步骤为:1)建立SDAE最优潮流模型。2)获取SDAE最优潮流模型输入层的输入样本X。3)对SDAE最优潮流模型进行初始化。4)对SDAE最优潮流模型进行训练,从而得到训练后的SDAE最优潮流模型。5)采用MCS法对待计算概率潮流的电力系统的随机变量进行抽样,从而获取计算样本。6)将步骤5得到的训练样本数据一次性输入步骤4中训练完成的SDAE最优潮流模型中,从而计算出最优潮流在线概率。7)对所述最优潮流在线概率进行分析,即绘制SDAE最优潮流模型的输出变量的概率密度曲线。本发明可广泛应用于电力系统的概率最优潮流求解,特别适用于新能源渗透率高导致系统不确定性增强的在线分析情况。

    一种基于深度学习的快速安全约束经济调度方法

    公开(公告)号:CN109784692B

    公开(公告)日:2020-11-24

    申请号:CN201811631297.6

    申请日:2018-12-29

    IPC分类号: G06Q10/06 G06Q50/06

    摘要: 本发明公开了一种基于深度学习的快速安全约束经济调度方法,主要步骤为:1)确定适用于安全约束经济调度模型的深度神经网络。2)对堆栈降噪自动编码器SDAE进行训练。3)建立基于深度学习的安全约束经济调度模型。4)令k=1,将电力系统运行条件输入到深度神经网络中,得到安全约束经济调度模型的起作用约束集J(1)。5)将约束集J(1)。输入到安全约束经济调度模型中,得到安全约束经济调度方案。6)对安全约束经济调度方案进行N‑1检验,若有新约束J(new),则令k=k+1,约束集更新为J(k)=J(k)∪J(new),并返回步骤5。若无新约束,则输出安全约束经济调度方案。本发明可广泛应用于电力系统各个行业的安全约束经济调度分析。