-
公开(公告)号:CN117746250A
公开(公告)日:2024-03-22
申请号:CN202311852221.7
申请日:2023-12-29
摘要: 本发明提供了一种融合实景三维与视频的烟火智能识别与精准定位方法,首先利用深度学习方法在图像处理上的优势,采用双光谱云台摄像机进行实时自动识别,烟火识别精度高。其次在定位时,融合了实景三维信息和视频信息,烟火定位的精度高。最后分别通过实时识别烟火和定位烟火,实现了森林烟火自动实时识别和定位,减少人工工作量,提高了工作效率。
-
公开(公告)号:CN110991359A
公开(公告)日:2020-04-10
申请号:CN201911243932.8
申请日:2019-12-06
发明人: 丁忆 , 李朋龙 , 曾安明 , 李晓龙 , 马泽忠 , 肖禾 , 罗鼎 , 段松江 , 胡艳 , 王岚 , 陈静 , 刘金龙 , 刘朝晖 , 魏文杰 , 谭攀 , 范文武 , 林熙 , 刘建 , 叶涛 , 袁力
摘要: 本发明公开了一种基于多尺度深度卷积神经网络的卫星图像目标检测方法,包括步骤收集卫星图像训练数据集,并进行样本标注;对卫星图像训练数据集进行预处理;搭建多尺度深度卷积神经网络;将预处理后的训练数据集输入到基于所述多尺度深度卷积神经网络的目标检测框架进行训练,获得训练好的目标检测神经网络;输入待检测卫星图像集,采用训练好的所述目标检测神经网络进行目标检测,输出识别结果。其显著效果是:提高了网络对于细粒度特征的检测结果以及区分不同物体的能力,改善了对于小物体和密集物体群的检测效果,具有更强的鲁棒性,有效地提高了目标检测效率,降低了硬件需求。
-
公开(公告)号:CN110427836B
公开(公告)日:2020-12-01
申请号:CN201910625252.6
申请日:2019-07-11
发明人: 曾安明 , 李朋龙 , 丁忆 , 胡翔云 , 张泽烈 , 胡艳 , 段伦豪 , 张觅 , 李晓龙 , 段松江 , 罗鼎 , 吴凤敏 , 刘金龙 , 刘建 , 黄印 , 陈雪洋 , 钱进 , 魏文杰 , 张黎 , 黄潇莹
摘要: 本发明公开了一种基于多尺度优化的高分辨率遥感影像水体提取方法,包括如下步骤:搭建待训练卷积神经网络,基于该网络从输入遥感影像中提取多尺度特征,从最低分辨率的特征中获取初始粗糙水体分割结果;通过擦除注意力方法,结合多尺度特征和初始分割结果,输出全分辨率下的水体提取结果;构建多尺度损失函数,获得训练好的卷积神经网络;将待提取的高分辨率遥感影像输入训练好的网络,得到水体提取结果。该方法通过对具有真实水体标注的遥感影像训练数据集进行学习与训练,通过擦除注意力机制的引导,结合多尺度优化策略,在显著提高了总体水体提取精度的同时,还加强了对细小水体的识别与提取。
-
公开(公告)号:CN111079604A
公开(公告)日:2020-04-28
申请号:CN201911243920.5
申请日:2019-12-06
发明人: 丁忆 , 李朋龙 , 罗鼎 , 张泽烈 , 李晓龙 , 肖禾 , 马泽忠 , 段松江 , 刘金龙 , 王亚林 , 吴凤敏 , 钱进 , 刘朝晖 , 曾远文 , 魏文杰 , 林熙 , 范文武 , 刘建 , 黄印 , 卢建洪
摘要: 本发明公开了一种面向大尺度遥感图像的微小目标快速检测方法,包括步骤:利用轻量级的残差结构构建Tiny-Net模块,并对输入的遥感图像进行特征图提取;搭建全局注意力模块;在全局注意力模块后依次连接分类器与检测器,并利用分类器检测当前输入图像块中的目标;对检测出的目标采用k-means聚类方法得到k个尺度的先验框;使用区域提案网络得到提案区域,并采用位置敏感的ROI池化对提案区域进行池化;训练网络,并利用训练好的网络对新输入的遥感图像进行微小目标的精确检测定位。其显著效果是:实现了快速精确的检测大尺度遥感图像中的微小目标,使得对大尺度遥感图像的目标实时检测成为可能。
-
公开(公告)号:CN110427836A
公开(公告)日:2019-11-08
申请号:CN201910625252.6
申请日:2019-07-11
发明人: 曾安明 , 李朋龙 , 丁忆 , 胡翔云 , 张泽烈 , 胡艳 , 段伦豪 , 张觅 , 李晓龙 , 段松江 , 罗鼎 , 吴凤敏 , 刘金龙 , 刘建 , 黄印 , 陈雪洋 , 钱进 , 魏文杰 , 张黎 , 黄潇莹
摘要: 本发明公开了一种基于多尺度优化的高分辨率遥感影像水体提取方法,包括如下步骤:搭建待训练卷积神经网络,基于该网络从输入遥感影像中提取多尺度特征,从最低分辨率的特征中获取初始粗糙水体分割结果;通过擦除注意力方法,结合多尺度特征和初始分割结果,输出全分辨率下的水体提取结果;构建多尺度损失函数,获得训练好的卷积神经网络;将待提取的高分辨率遥感影像输入训练好的网络,得到水体提取结果。该方法通过对具有真实水体标注的遥感影像训练数据集进行学习与训练,通过擦除注意力机制的引导,结合多尺度优化策略,在显著提高了总体水体提取精度的同时,还加强了对细小水体的识别与提取。
-
公开(公告)号:CN110443770A
公开(公告)日:2019-11-12
申请号:CN201910737998.6
申请日:2019-08-12
发明人: 丁忆 , 李朋龙 , 连蓉 , 王亚林 , 徐永书 , 张泽烈 , 叶立志 , 胡翔云 , 胡艳 , 陈静 , 罗鼎 , 段松江 , 刘金龙 , 陈甲全 , 吴凤敏 , 王小攀 , 钱进 , 魏文杰 , 曾远文 , 李晓龙
IPC分类号: G06T5/00
摘要: 本发明公开了一种基于离散粗糙度估计的机载激光点云数据噪声检测方法,包括步骤:读取机载激光点云数据,并构建离散点云TIN模型;根据离散点云TIN模型,获取模型中各顶点的一环邻域、二环邻域;采用离散粗糙度估计算子,计算各点的离散粗糙度;计算各点的二环邻域离散粗糙度均值和二环邻域粗糙度标准差;计算各点的二环邻域高程均值和二环邻域高程标准差;标记噪声点。其显著效果是:提高了机载激光点云数据噪声检测的智能化程度,极大地提高了机载激光点云数据处理效率及后续处理精度。
-
-
-
-
-