一种零存整取模式下存户存款贡献度评估方法

    公开(公告)号:CN112215704A

    公开(公告)日:2021-01-12

    申请号:CN202011141781.8

    申请日:2020-10-22

    IPC分类号: G06Q40/02 G06K9/62

    摘要: 本发明涉及一种零存整取模式下存户存款贡献度评估方法,属于数据处理技术领域。该方法包括:通过对样本数据进行筛选以及清洗,对零存整取模式下存户存款异常数据进行过滤,得到数据集;获取用户特征数据,用户特征数据包括:存户历史缴款信息;将训练数据集输入模型进行训练分析,得到评估存户存款贡献度模型,将测试数据集用户特征数据输入至已训练的模型进行预测操作,以输出预测信息,根据预测信息生成存户存款贡献度评估信息,由此大大提高了对存户存款贡献度评估的准确度。

    基于多方高维数据纵向联邦学习的商业信息推荐方法及装置

    公开(公告)号:CN114677200B

    公开(公告)日:2024-06-21

    申请号:CN202210368272.1

    申请日:2022-04-01

    摘要: 本发明涉及一种基于多方高维数据纵向联邦学习的商业信息推荐方法及装置,属于大数据技术领域,包括以下步骤:S1:创建同态加密的密钥对。进行多方数据的预处理和加密样本对齐;S2:构建纵向联邦LightGBM模型;S3:将纵向联邦LightGBM模型转换成神经网络,作为纵向联邦ECA‑DeepGBM模型的GBDT2NN部分;S4:纵向联邦ECA‑DeepGBM模型CatNN部分前馈过程计算;S5:构建损失函数及模型整体训练,基于训练好的高维数据分类预测模型,实现基于多方高维数据的商业信息推荐。本发明通过多方数据增加特征维度的方式,以达到进行精准商业信息推荐的目的。