-
公开(公告)号:CN106933097B
公开(公告)日:2021-07-20
申请号:CN201710339420.6
申请日:2017-05-15
申请人: 青岛科技大学
IPC分类号: G05B13/02
摘要: 本发明公开了一种基于多层优化PCC‑SDG的化工过程故障诊断方法。本发明通过以全工艺的网络拓扑结构为参考点,利用皮尔逊相关系数(PCC)统计指标对选取的变量初步优化,然后运用PCA权重思想从多层相关系数集中选取了权重较大的特殊变量,结合符号有向图(SDG)建立了最优PCC‑SDG网络,最后针对最优PCC‑SDG建立聚集权重系数Q的规则进行故障诊断。本发明提出了一种新的故障诊断方法,完善了SDG建模方法,提高了工作人员检测多变量状态的效率,避免时滞等非信息同步因素的影响,并且更加有效地降低误报率并准确地识别是何种类型的故障,极大降低生产安全事故的发生。
-
公开(公告)号:CN106933097A
公开(公告)日:2017-07-07
申请号:CN201710339420.6
申请日:2017-05-15
申请人: 青岛科技大学
IPC分类号: G05B13/02
CPC分类号: G05B13/024
摘要: 本发明公开了一种基于多层优化PCC‑SDG的化工过程故障诊断方法。本发明通过以全工艺的网络拓扑结构为参考点,利用皮尔逊相关系数(PCC)统计指标对选取的变量初步优化,然后运用PCA权重思想从多层相关系数集中选取了权重较大的特殊变量,结合符号有向图(SDG)建立了最优PCC‑SDG网络,最后针对最优PCC‑SDG建立聚集权重系数Q的规则进行故障诊断。本发明提出了一种新的故障诊断方法,完善了SDG建模方法,提高了工作人员检测多变量状态的效率,避免时滞等非信息同步因素的影响,并且更加有效地降低误报率并准确地识别是何种类型的故障,极大降低生产安全事故的发生。
-