摘要:
Systems and methods are provided for adapting communication parameters to a variety of link conditions, traffic types and priorities. For example, WiFi transmission parameters (e.g. retry limit, AIFS, CW size, MCS order and/or CCA threshold) may be adapted to channel congestion levels, channel errors and/or traffic priority levels. Parameter adaptation may be coordinated across layers (e.g. between MAC and PHY layer parameters). Congestion levels may be detected, for example, using a smoothed queue size and/or channel busy time. Traffic may be transmitted using adapted parameters, such as reduced retry limits for a high congestion level and increased retry limits for priority traffic in response to channel error. Feedback may support parameter adaptation. For example, feedback may be provided by a receiver and/or within a sender, such as a sender MAC and/or PHY layer or a parameter adapter providing feedback (e.g. spoofed NACK packet) to a sender application, transport and/or network layer.
摘要:
Systems and methods are provided for adapting communication parameters to a variety of link conditions, traffic types and priorities. For example, WiFi transmission parameters (e.g. retry limit, AIFS, CW size, MCS order and/or CCA threshold) may be adapted to channel congestion levels, channel errors and/or traffic priority levels. Parameter adaptation may be coordinated across layers (e.g. between MAC and PHY layer parameters). Congestion levels may be detected, for example, using a smoothed queue size and/or channel busy time. Traffic may be transmitted using adapted parameters, such as reduced retry limits for a high congestion level and increased retry limits for priority traffic in response to channel error. Feedback may support parameter adaptation. For example, feedback may be provided by a receiver and/or within a sender, such as a sender MAC and/or PHY layer or a parameter adapter providing feedback (e.g. spoofed NACK packet) to a sender application, transport and/or network layer.