Abstract:
A gas sensor diagnostic method includes the steps of counting the reversal number of times that a target air-fuel ratio for an air-fuel mixture to be supplied to an internal combustion engine reverses from a rich side to a lean side or from the lean side to the rich side through a specific air-fuel ratio defined as a boundary of the rich and lean sides; obtaining a detection signal of a gas sensor at constant time intervals during a diagnosis period between a timing when the count for the reversal number is started and a timing when the reversal number reaches a predetermined number; calculating a moderated signal by applying a moderation calculation using a predetermined moderation coefficient to the obtained detection signal; calculating a deviation between the obtained detection signal and the calculated moderated signal; and determining whether the gas sensor is in an abnormal state or not on the basis of the deviation.
Abstract:
[Objective] An object is to provide a sensor control apparatus and a sensor-control-apparatus control method which can reduce variation in startup time among a plurality of times of execution of detection processing, in consideration of variation in output characteristic among a plurality of gas sensors. [Means for Solution] In a sensor control apparatus, before drive control (S55 to S80) is started, preliminary control is executed so as to supply a constant current to a second oxygen pump cell over a constant time, to thereby control to a constant level the amount of oxygen pumped from a second measurement chamber to the outside of the second measurement chamber (S40 to 50). The preliminary control is executed under control conditions of the sensor control apparatus which are determined for each gas sensor and are associated with the amount of oxygen pumped from the second measurement chamber to the outside thereof. The control conditions bring into a target range the concentration correspondence value calculated after start of the drive control which is started after the preliminary control is executed in a state in which a reference gas having a known concentration is introduced into the gas sensor.
Abstract:
A fuel quality sensor is provided for use with an engine system. The fuel quality sensor may have a single sensing element configured to sense a thermodynamic property of an unknown mixture of gaseous fuel, and a heating element configured to increase a temperature of the unknown mixture of gaseous fuel at the single sensing element to multiple different temperature levels. The fuel quality sensor may also include a microprocessor configured to calculate a fuel parameter of the unknown mixture of gaseous fuel as a function of only the thermodynamic property sensed at the multiple different temperature levels.
Abstract:
Ein Verfahren zum Betreiben einer Sonde zur Bestimmung einer Gaszusammensetzung, insbesondere einer Abgassonde zur Bestimmung der Abgaszusammensetzung im Abgas einer Brennkraftmaschine, wobei die Sonde mittels einer impulsartig betriebenen Heizung auf Betriebstemperatur aufgeheizt wird, ist dadurch gekennzeichnet, dass Heizerschaltimpulse, die eine vorgebbare Charakteristik aufweisen, gezählt werden und aufgrund der Anzahl der Heizerschaltimpulse auf eine Alterung der Sonde geschlossen wird.
Abstract:
The present disclosure relates to a system for regenerating a particulate matter sensor, the system comprising a particulate matter sensor comprising a sensing element and a heating element; a sensing module configured to detect a soot loading on the sensing element of the particulate matter sensor and generate a regeneration request indicating a desired regeneration temperature; a heating module configured to receive the regeneration request and send a heating command signal to the heating element based on the regeneration request; an electrical resistance module configured to detect an electrical resistance in the heating element; a calibration module configured to determine an actual temperature of the heating element based on a resistance-to-temperature response model; and a temperature feedback module configured to modify the heating command signal according to the difference between the desired regeneration temperature and the actual temperature.
Abstract:
A diagnostic method and system is described for diagnosing an operating condition of a conductive particulate matter sensor. The sensor has a substrate with electrical resistance that varies with temperature and two electrodes on the substrate adapted to collect particulate matter between the electrodes, thereby establishing an electrically conductive path through collected particulate matter between the electrodes that can be detected by measuring electrical resistance between the electrodes, R elect . The diagnosis is performed by heating the substrate in the area between the electrodes and using the resistance between the electrodes to determine detecting whether contamination is present on the surface of the sensor. Heat may be maintained on the sensor to attempt to bum off a detected contaminant, and a subsequent resistance reading may be used to determine if the contaminant was successfully burned off.
Abstract:
A vehicle control apparatus and methodology relate to an exhaust gas sensor and sensor heater associated with an exhaust passage of a vehicle engine. The exhaust gas sensor is selectively heated to an applicable activation temperature by the heater so that the sensor may output a normal and accurate sensing signal. The heating must take place, however, without causing damage to the sensor such as that resulting from condensation that may occur within the exhaust passage as a result of engine operation and environmental conditions.