摘要:
An apparatus for dissecting an eye for the introduction of a photosensitizer into tissue of an eye, a cannula device for introducing the photosensitizer, a system comprising the apparatus and the cannula device, and a method for dissecting an eye for the introduction of a photosensitizer are provided. The apparatus comprises a source for laser radiation, a system for guiding and focusing the laser radiation with respect to the tissue of an eye, and a computer for controlling said system.
摘要:
An ophthalmic apparatus includes a resting member configured to provide rest for a human patient, and an ophthalmic device configured to perform one or more procedures with respect to an eye of the patient resting on the resting member, where the one or more procedures include at least one of an eye-surgical, therapeutic and diagnostic procedure. The apparatus also includes a user interface device configured to receive log-in data from a user, and a controller configured to access stored user profile data based on the log-in data and configure one or more configurable components of the apparatus in accordance with the accessed user profile data.
摘要:
The invention relates to an eye-surgical laser apparatus, a use of said apparatus, and to a method for scanning the corneal tissue of an eye before or during eye surgery. The apparatus comprises optics that are adapted to focus a laser beam at a focus within a corneal tissue of an eye, and a detection element adapted to detect light that is formed, at the focus, as a frequency multiple and backscattered or forward emitted. Image information about the inner corneal tissue is then produced from the detected light.
摘要:
A device (100) for ophthalmic radiation is provided. The device comprises a radiation interface (102), an optical branch coupler (104), and a plurality of ophthalmic units (106, 108, 110, 112). The radiation interface is adapted to at least one of output and capture radiation on an optical path (124). The optical path is directable towards a patient's eye. The optical branch coupler is adapted to couple output radiation from a plurality of optical branches (118, 119, 120, 122, 123) into the optical path and to couple captured radiation from the optical path into the optical branches. The captured radiation is spectrally split by the optical branch coupler into the optical branches. Each of the optical branches has a different spectral range. Each of the plurality of ophthalmic units is arranged to couple to one of the optical branches.
摘要:
In certain embodiments, a system (10) comprises a laser source (20), one or more optical elements (24), a monitoring device (28), and a control computer (30). The laser source (20) emits one or more laser pulses. The optical elements (24) change a pulse length of the laser pulses, and the monitoring device (28) measures the pulse length of the laser pulses to detect the change in the pulse length. The control computer (30) receives the measured pulse length from the monitoring device (28), determines one or more laser parameters that compensate for the change in the pulse length, and controls the laser source (20) according to the laser parameters.
摘要:
According to an exemplary embodiment, a device (12) for assisting in the preparation of an operation on the human eye (14) for the purpose of generating a corneal flap by means of a microkeratome system (10) includes: an input interface arrangement (50) that permits at least the input of data relating to a set value of at least one flap parameter and also to at least one patient-related parameter; a computer (46) that has been set up to access a stored data collection (44) of several surgical data records, each of which includes a post-operative actual value of at least one flap parameter, a value for at least one patient-related parameter and configuration data of the microkeratome system, the computer (46) having been set up to ascertain, on the basis of the data collection (44) in a manner depending on the input data, configuration information that represents a proposed configuration of the microkeratome system (10); an output interface arrangement (48) for outputting the configuration information.