摘要:
The present invention describes linking a therapeutic agent to a compound which is known to be naturally concentrated in a tissue affected by, or that is causing, a disease, to create a prodrug for treatment of the disease. Embodiments of the present invention include a new class of carotenoid-linked drugs to treat such blinding retinal disease such as age-related macular degeneration, retinoblastoma, and diabetic macular edema. For example, the present invention comprises a method for the treatment of a disorder of the eye comprising linking a therapeutic agent to a xanthophyll carotenoid to create a prodrug, and administering a therapeutically effective amount of the prodrug to an individual in need of treatment. Provided are prodrugs for treatment of retinoblastoma, cystoid macular edema (CME), exudative age-related macular degeneration (AMD), diabetic retinopathy, diabetic macular edema, or inflammatory disorders.
摘要:
The present invention has revealed the compounds transportable by ATB0,+. Based on the information about these compounds, drugs transportable by ATB0,+ may be designed, producedand screened. Such drugs may serve to treat and/or prevent the diseases in which NOS, phenylglycine, carnitine, D-amino NOS, phenylglycine, carnivolved. The ATB0,+ gene may be administered to patients to be used for gene therapy of the diseases as described above.
摘要:
The examples demonstrate that GIP receptor mRNA and protein are present in normal bone and osteoblastic-like cell lines, and that high-affinity receptors for GIP can be demonstrated by 125 I GIP binding studies. When applied to osteoblast-like cells (SaOS2), GIP stimulated an increase in cellular cAMP content and in intracellular calcium, with both responses being dose dependent. Moreover, administration of GIP results in elevated expression of collagen type I mRNA as well as an increase in alkaline phosphatase activity. Both of these effects reflect anabolic actions of presumptive osteoblasts. These results provide the first evidence that GIP receptors are present in bone and osteoblastic-like cells and that GIP modulates the function of these cells. GIP has anabolic actions on remodeling bone, increasing vertebral bone density in a rat model of osteoporosis. GIP at 10nM inhibits PTH-induced bone resorption in a fetal long bone assay and stimulates the synthesis of type 1 collagen mRNA. Transgenic mice overexpressing GIP have increased bone density compared to same age controls. GIP or analogs thereof can therefore be used as a therapeutic to inhibit bone resorption and to maintain or increase bone density. GIP antagonists, compounds which block binding to the GIP receptor, can be used to decrease bone density.
摘要:
The induction of indoleamine 2,3-dioxygenase (IDO) in an IDO-competent subset of dendritic cells by TLR ligands, including TLR9 ligands, and various uses thereof are presented.
摘要:
The present invention is based on the discovery antigen-presenting cells (APCs) may be generated to have predetermined levels of expression of the intracellular enzyme, indoleamine 2,3-dioxygenase (IDO). Because expression of high levels of IDO is correlated with a reduced ability to stimulate T cell responses and an enhanced ability to induce immunologic tolerance, APCs having high levels of IDO may be used to increase tolerance in the immune system, as for example in transplant therapy or treatment of autoimmune disorders. For example, APCs having high levels of IDO, and expressing or loaded with at least one antigen from a donor tissue may be used to increase tolerance of the recipient to the donor's tissue. Alternatively, APCs having reduced levels of IDO expression and expressing or loaded with at least one antigen from a cancer or infectious pathogen may be used as vaccines to promote T cell responses and increase immunity.
摘要:
The invention relates to the treatment of various injuries, disorders, dysfunctions, diseases, and the like of the brain with MAPCs, particularly in some aspects, to the treatment of the same resulting from hypoxia, including that caused by systemic hypoxia and that caused by insufficient blood supply. In some further particulars the invention relates, for example, to the treatment of hypoxic ischemic brain injury with MAPCs, in children for example, and to the treatment of cortical infarcts and stroke with MAPCs in adults, for example.
摘要:
The present invention is based on the discovery antigen-presenting cells (APCs) may be generated to have predetermined levels of expression of the intracellular enzyme, indoleamine 2,3-dioxygenase (IDO). Because expression of high levels of IDO is correlated with a reduced ability to stimulate T cell responses and an enhanced ability to induce immunologic tolerance, APCs having high levels of IDO may be used to increase tolerance in the immune system, as for example in transplant therapy or treatment of autoimmune disorders. For example, APCs having high levels of IDO, and expressing or loaded with at least one antigen from a donor tissue may be used to increase tolerance of the recipient to the donor's tissue. Alternatively, APCs having reduced levels of IDO expression and expressing or loaded with at least one antigen from a cancer or infectious pathogen may be used as vaccines to promote T cell responses and increase immunity.
摘要:
The invention provides methods of screening for substances having an effect on a nicotine receptor by contacting a cell having a nicotine receptor with a test substance; and determining any increase or decrease in phosphorylation of Janus-Activated Kinase 2 (JAK2). An increase in phosphorylation of JAK2 indicates that the test substance stimulates the nicotine receptor, and wherein a decrease in phosphorylation of JAK2 indicates that the test substance inhibits the nicotine receptor. The invention also provides screening methods for identification of substances that affect nicotine receptor activity through activity mediated by the AT2 receptor. Related pharmaceutical compositions and methods of treatment are also provided.