Abstract:
The present invention belongs to the technical field of biomedicine, and specifically relates to an extracellular cyclophilin inhibitor and the use thereof, wherein the structural general formula of the extracellular cyclophilin inhibitor of the present invention is as shown in formula (I). According to the present invention, a group capable of reacting with sulfhydryl of cysteine at a specific site on blood albumin is extracted by means of a side chain of a new cyclosporin derivative, and a drug conjugate is rapidly formed after same enters the body, which can effectively restrict the drug to the extracellular area and form targeted inhibition of extracellular cyclophilin, thereby achieving the aim of treating diseases associated therewith.
Abstract:
The present invention relates to a carrier for delivering oligonucleotides into cells for therapeutic use. To inhibit a target protein or promote expression of a target protein in a cell, a peptide-lipid conjugate is prepared, and a nanoparticle consisting of a peptide-lipid conjugate comprising oligonucleotides and a pharmaceutical composition comprising same are provided. It was confirmed that, by using the nanoparticle consisting of a peptide-lipid conjugate according to the present invention, oligonucleotides were effectively delivered into cells. In addition, by confirming that expression of a cancer-causing protein is reduced by the oligonucleotides and an anticancer effect is exhibited in an animal model in which cancer occurs, the nanoparticle consisting of a peptide-lipid conjugate was found to be effective in the delivery of oligonucleotides.
Abstract:
There are provided for herein novel amine-containing transfection compounds and methods for making and using same. The compounds are generally obtained by reacting a primary amine with an unsaturated compound. Transfection complexes made using the amine-containing transfection compounds in combination with additional compounds to encapsulate biologically active agents such as nucleic acids are also provided for herein. Methods of using the transfection complexes for the in vivo or in vitro delivery of biologically active agents are also described. The transfection complexes of the present invention are highly potent, thereby allowing effective modulation of a biological activity at relatively low doses compared to analogous transfection compounds known in the art.
Abstract:
A compound with the formula I wherein: R2 is of formula II where Q is selected from OH, SH and NRN, and RN is selected from H, methyl and ethyl, as well as drug-linkers and drug-conjugates made from this compound.
Abstract:
The present invention relates to novel derivatives of oxazaphosphorines, pharmaceutical compositions and therapeutic uses thereof, in particular for treating or preventing cancer.
Abstract:
The present invention provides methods and compositions that permit controlled and prolonged drug release in vivo. The compounds are either prodrugs with tunable rates of release, or conjugates of the drug with macromolecules which exhibit tunable controlled rates of release.
Abstract:
This application describes a compound represented by Formula (I): (I) wherein: Y is a biologically active organic core group comprising one or more of an aryl group, a heteroaryl aryl group, a nonaromatic hydrocarbyl group, and a nonaromatic heterocyclic group, to which Z is covalently bonded; n is 1, 2, 3, 4 or 5; m is 1 or 2; Z is O, NR, or N; X1 is a covalent bond or —CH2CH2—, X2 is O or NR; and R comprises H or a substituted or unsubstituted group selected from an aryl group, a heteroaryl aryl group, a nonaromatic hydrocarbyl group, and a nonaromatic heterocyclic group. Methods of preparing the compounds, methods of using the compounds, and pharmaceutical compositions comprising the compounds are described as well.
Abstract:
The present invention concerns methods and reagents useful in modulating gene expression in a variety of applications, including use in therapeutic, diagnostic, target validation, and genomic discovery applications. Specifically, the invention relates to synthetic chemically modified small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of mediating RNA interference (RNAi) against target nucleic acid sequences. The small nucleic acid molecules are useful in the treatment of any disease or condition that responds to modulation of gene expression or activity in a cell, tissue, or organism.