Abstract:
Provided is an illumination device for a projection device, which is appropriate to stereoscopic display and allows speckles to be inconspicuous. The illumination device includes: an optical element (50) which including a hologram recording medium (55) including a first zone Z1 and a second zone Z2 and can reproduce an image 5 of a scattering plate 6; an irradiation device (60) which irradiates the optical element with a coherent light beam such that the light beam is allowed to scan the hologram recording medium; and a polarization control unit (70) provided on an optical path of the light beam to an illuminated zone (LZ). The light beams incident on respective positions of the hologram recording medium are allowed to reproduce the image superimposed on the illuminated zone. The polarization control unit (70) controls polarization of the light beams such that the light beam incident on the first zone to travel toward the illuminated zone and the light beam incident on the second zone to travel toward the illuminated zone are configured with different polarization components.
Abstract:
There is provided a screen capable of sufficiently reducing speckles. A screen for displaying an image by being irradiated with a light beam from a projector, is provided with a plurality of particles each including a first part and a second part different in dielectric constant, a particle layer having the plurality of particles, and electrodes which form an electric field for driving the particles of the particle layer by applying a voltage to the particle layer.
Abstract:
An illumination device has a coherent light source that emits coherent light beam, and an optical device that diffuses the coherent light beam, wherein the optical device comprises a first diffusion region that diffuses the coherent light beam to illuminate a first area, and a second diffusion region that diffuses the coherent light beam to display predetermined information in a second area.
Abstract:
A laser beam (L50) generated by a laser light source (50) is reflected by a light beam scanning device (60) and irradiated onto a hologram recording medium (45). On the hologram recording medium (45), an image (35) of a scatter plate is recorded as a hologram by using reference light that converges on a scanning origin (B). The light beam scanning device (60) bends the laser beam (L50) at the scanning origin (B) and irradiates the laser beam onto the hologram recording medium (45). At this time, scanning is carried out by changing a bending mode of the laser beam with time so that an irradiation position of the bent laser beam (L60) on the hologram recording medium (45) changes with time. Regardless of an irradiation position of the beam, diffracted light (L45) from the hologram recording medium (45) produces a reproduction image (35) of the scatter plate on the spatial light modulator (200). The modulated image of the spatial light modulator (200) is projected onto a screen (400) by a projection optical system (300).