摘要:
The compression of successive blocks of digital data is optimized by selecting between different compression algorithms or different data formats on a block-by-block basis. In one application, digitized interlaced video signals are processed for transmission in a compressed form. A set of pixel data presented in a field format is compressed to provide a first compressed video signal. The set of pixel data is also presented in a frame format and compressed to provide a second compressed video signal. Errors are evaluated in the first and second compressed video signals. The compressed video signal having the least error is selected for further processing. The technique is repeated for successive sets of pixel data and the selected signals are encoded to identify them as field formatted or frame formatted signals. The encoded selected signals are then combined to provide a compressed video signal data stream for transmission. Apparatus for receiving and decoding the signals is also disclosed.
摘要:
An interleaver (34) processes information in a pseudorandom order to provide pseudorandom interleaved data for communication to a deinterleaver (42). The pseudorandom interleaved data is processed at the deinterleaver (42) in a pseudorandom order corresponding to that used at the interleaver (34) means, to recover the original information. The pseudorandom processing at the deinterleaver is synchronized with the pseudorandom processing at the interleaver on a trial and error basis. In one embodiment, full synchronization occurs when a Viterbi decoder (44) receiving data from the deinterleaver has a renormalization rate within a designated threshold and when enough synchronization words are detected in data output from the deinterleaver to meet a predetermined criterion. In another embodiment, a timer is used to initiate a new starting address for the pseudorandom processing at the deinterleaver during successive time intervals. Synchronization is achieved when a start address is found that results in the detection of enough synchronization words in data output from the deinterleaver to meet a predetermined synchronization criterion.
摘要:
A two stage accumulator is provided for updating coefficients. The accumulator is particularly useful in an adaptive equalizer. A first stage of the accumulator receives an error word and outputs sign and carry bits resulting from the addition of the error word and an N-bit LSB portion of a larger M-bit coefficient. A second stage is responsive to the sign and carry bits for updating the (M-N) MSB's of the M-bit coefficient. New error words are cyclically provided to the first stage during successive coefficient update cycles. The first stage can be implemented using an N-bit twos complement adder. The second stage can be implemented using an up/down counter. A leakage function is provided by causing the up/down counter to periodically skip over increment and decrement cycles.
摘要:
Coded modulation schemes based on codes for QPSK modulation are directly incorporated into QAM based modulation systems, forming trellis coded QAM, to provide a practical coding structure that is both efficient in bandwidth and data reliability. Concatenated coding with QPSK based trellis coding and symbol error correcting coding is used. In an encoder (Fig. 2), an N-bit QAM constellation pattern (80) is divided into four subsets, each including N/4 symbol points of the constellation pattern. A two-bit QPSK codeword (92) is assigned to each of the four subsets (82, 84, 86, 88). A symbol to be transmitted is first encoded using an outer error correcting encoding algorithm, such as a Reed-Solomon code (12). Part of the symbol is then encoded (48) with an inner code that comprises a rate 1/2 trellis encoding algorithm to provide a QPSK codeword, which is mapped (50) with the remaining bits of the symbol to provide a modulation function, wherein the remaining bits (94) correlate the symbol with one of the symbol points included in the subset defined by the QPSK codeword. At a receiver (Fig. 3), the recovered modulation function is pruned (62) to provide a set of metrics (66) corresponding to the subsets and to provide a plurality of conditional determinations of the constellation point identified by the remaining bits. The metrics are used in a rate 1/2 trellis decoder (68) to recover a first bit that is encoded using a rate 1/2 encoding algorithm to recreate the QPSK codeword. One of a plurality of the conditional determinations is selected in response to the recreated codeword. The selected conditional determination is combined with the recovered first bit to provide a decoded output that is further decoded using a symbol error correcting algorithm such as a Reed-Solomon code (36).
摘要:
A multichannel image compression system uses a plurality of encoders (10, 12 ... 14) to compress image data. A coding level command is provided to each of the encoders to specify a level of quality to be provided by each encoder. Encoded image data, provided by the encoders in response to the coding level command, is multiplexed (26) into a combined signal for transmission. The coding level command is adjusted in response to an accumulated amount of data from the combined signal, to maintain the accumulated data within a throughput capability of a communication channel (48). Although the coding level command may specify a global coding level that is the same for all of the encoders, the encoders can derive local coding levels from the global coding level to provide different encoding qualities. Decoder apparatus (30-46) is provided to recover an image from the compressed image data.
摘要:
Digital video signals are processed by a plurality of independently operating processors (42, 44, 46, 48) to provide data for transmission in a compressed, motion compensated form. A video image frame area (10) is divided into a set of subframes (12, 16, 20, 24). The set of subframes is systematically shifted such that the individual subframes progressively cycle across and wrap around the video image frame area. For each successive video frame, video image data bounded by each of the different subframes is independently compressed using motion estimation to reduce data redundancy among the successive frames. The motion estimation is limited for each subframe of a current video frame to areas of a previous video frame that were bounded by the same subframe in the previous frame. In an illustrated embodiment, the set of subframes (12, 16, 20, 24) is shifted once for each successive video frame, and each subframe includes a refresh region (14, 18, 22, 26) whereby the video image frame area (10) is progressively refreshed as the subframes are shifted thereacross. Receiver apparatus (60-82) for use in decoding the independently processed subframe data is also disclosed.
摘要:
Coded modulation schemes based on codes for QPSK modulation are directly incorporated into QAM based modulation systems, forming trellis coded QAM, to provide a practical coding structure that is both efficient in bandwidth and data reliability. Concatenated coding with QPSK based trellis coding and symbol error correcting coding is used. In an encoder (Fig. 2), an N-bit QAM constellation pattern (80) is divided into four subsets, each including N/4 symbol points of the constellation pattern. A two-bit QPSK codeword (92) is assigned to each of the four subsets (82, 84, 86, 88). A symbol to be transmitted is first encoded using an outer error correcting encoding algorithm, such as a Reed-Solomon code (12). Part of the symbol is then encoded (48) with an inner code that comprises a rate 1/2 trellis encoding algorithm to provide a QPSK codeword, which is mapped (50) with the remaining bits of the symbol to provide a modulation function, wherein the remaining bits (94) correlate the symbol with one of the symbol points included in the subset defined by the QPSK codeword. At a receiver (Fig. 3), the recovered modulation function is pruned (62) to provide a set of metrics (66) corresponding to the subsets and to provide a plurality of conditional determinations of the constellation point identified by the remaining bits. The metrics are used in a rate 1/2 trellis decoder (68) to recover a first bit that is encoded using a rate 1/2 encoding algorithm to recreate the QPSK codeword. One of a plurality of the conditional determinations is selected in response to the recreated codeword. The selected conditional determination is combined with the recovered first bit to provide a decoded output that is further decoded using a symbol error correcting algorithm such as a Reed-Solomon code (36).
摘要:
A descrambler for a scrambled channel having a suppressed horizontal synchronization pulse which scrambled channel is provided in a broadband cable television signal along with nonscrambled channels. A signal splitter receives the broadband CATV signal and provides first and second split outputs. A switch coupled to the second output of the signal splitter passes the horizontal synchronization pulse of the scrambled channel and blocks the video signal of the scrambled channel. The horizontal synchronization pulse passing through the switch is then phase adjusted to synchronize with the horizontal synchronization pulse of the scrambled channel provided at the first output of the signal splitter, and both horizontal synchronization pulses are summed in a combiner along with the video/audio signal provided at the first output of the signal splitter. Consequently, the full synchronization pulse is provided at the output of the combiner to descramble the scrambled channel. No band reject filter is required between the first output of the power splitter and the power combiner so that the nonscrambled channels are unaffected by the descrambler.