摘要:
A passively modelocked fiber laser (10) utilizes a rare-earth-doped fiber section (12) as the gain medium, which exhibits a relatively high absorption (e.g., peak pump absorption > 50 dB/m) and relatively low dispersion (e.g., -20 ps/km-nm g
摘要:
A fiber laser having at least one pair of reflectors coupled to an optical fiber, the at least one pair of reflectors defining an optical cavity between the at least one pair of reflectors and being configured to reflect light within the optical cavity. At least one light pump is coupled to the optical fiber and configured to provide pump light into the optical cavity, and at least one medium is positioned within the optical cavity and configured to generate signal light from the pump light in the optical cavity. Further, at least one grating positioned within the optical cavity and configured to couple the signal light out of the optical cavity.
摘要:
A technique is described for eliminating feedback light in a high-power optical device. An optical device is provided that generates, along an optical pathway, an output light at a desired signal wavelength, wherein the generation of the output light at the signal wavelength results in the generation of a feedback light at an undesired feedback wavelength. A port is provided at a selected location along the optical fiber pathway. The port is terminated with a length of a filter fiber, wherein the filter fiber has loss characteristics at the feedback wavelength that result in the elimination of feedback light from the optical fiber pathway through the port.
摘要:
A polarization-maintaining figure eight (PMFE) fiber laser is configured to generate ultrashort (femtosecond) output pulses by intentionally inserting asymmetry (in the form of a phase bias) into the bi-directional loop of the fiber laser. The introduction of asymmetry (via an asymmetric coupler, splice, attenuator, fiber bend, multiple amplifying sections, or the like) allows for an accumulation of phase difference within the bi-directional loop sufficient to create modelocking and generate ultrashort output pulses.