摘要:
The present invention provides a system and method of storing hydrogen (H2) and releasing it on demand, comprising and making use of diaminoalkanes and alcohols, or aminoalcohols as liquid-organic hydrogen carrier systems (LOHC). 2-amino-ethanol (AE) or its N-methyl derivative 2-(methylamino)ethanol undergo catalytic dehydrogenation to form a cyclic dipeptide (glycine anhydride—GA) or its N,N-dimethyl derivative (N,N-dimethyl GA) with release of hydrogen. Similarly, ethylenediamine (ED) and ethanol undergo catalytic dehydrogenation to form N,N′-diacetylethylenediamine (DAE) with release of hydrogen. Glycine anhydride (GA) or N,N-dimethyl-GA may be hydrogenated back to 2-aminoethanol (AE) or 2-(methylamino)ethanol, respectively, each of which functions as a hydrogen storage system. N,N′-diacetylethylenediamine (DAE) may be hydrogenated back to ED and ethanol, which functions as a hydrogen storage system. These reactions may be catalyzed by a variety of compounds or complexes, including Ruthenium complexes as described herein.
摘要:
The present invention provides novel ruthenium based catalysts, and a process for preparing amines, by reacting a primary alcohol and ammonia in the presence of such catalysts, to generate the amine and water. According to the process of the invention, primary alcohols react directly with ammonia to produce primary amines and water in high yields and high turnover numbers. This reaction is catalyzed by novel ruthenium complexes, which are preferably composed of quinolinyl or acridinyl based pincer ligands.
摘要:
The present invention provides a process for preparing a metal carbene complex of formula (I): wherein M is a transition metal atom selected from the group consisting of ruthenium, rhodium, iron , cobalt, osmium and iridium; L denotes neutral donor ligands ligated to said metal, such groups being the same or different; X is an anionic ligand; R1 and R2 are each independently selected from the group consisting of hydrogen, substituted or unsubstituted C1-C20 alkyl, substituted or unsubstituted C2-C20 alkenyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted vinyl, a is 2 or 3 and b is 1 or 2, such process comprising reacting a sulfur ylide of the formula Ar>2 R or its precursor with an appropriate metal complex comprising a transition metal atom selected from the group consisting of ruthenium, rhodium, iron, cobalt, osmium and iridium, said metal complex being also in dimeric form, at a temperature between +80 DEG C and -80 DEG C, in an inert solvent and under inert atmosphere.