摘要:
The present invention relates to novel Ruthenium catalysts and related borohydride complexes, and the use of such catalysts, inter alia, for (1) hydrogenation of amides (including polyamides) to alcohols and amines; (2) preparing amides from alcohols with amines (including the preparation of polyamides (e.g., polypeptides) by reacting dialcohols and diamines and/or by polymerization of amino alcohols); (3) hydrogenation of esters to alcohols (including hydrogenation of cyclic esters (lactones) or cyclic di-esters (di-lactones) or polyesters); (4) hydrogenation of organic carbonates (including polycarbonates) to alcohols and hydrogenation of carbamates (including polycarbamates) or urea derivatives to alcohols and amines; (5) dehydrogenative coupling of alcohols to esters; (6) hydrogenation of secondary alcohols to ketones; (7) amidation of esters (i.e., synthesis of amides from esters and amines); (8) acylation of alcohols using esters; (9) coupling of alcohols with water to form carboxylic acids; and (10) dehydrogenation of beta-amino alcohols to form pyrazines. The present invention further relates to the novel uses of certain pyridine Ruthenium catalysts.
摘要:
A use of an acceptor-less dehydrogenation catalyst for an electrocatalytic oxidation of an alcohol to an ester or/and an acid under electrochemical conditions, the acceptor-less dehydrogenation catalyst being represented by the structure of any one of the formulae F1, F2, or F3:
M being selected from the group consisting of Fe, Co, Ni, Ru, Rh, Pd, Os, Pt, Ir, Mn; L and X being ligands; X is an anionic ligand, L is a neutral ligand, Z being selected from the group consisting of C, N; R' being an organic substituent of the aromatic ring; E' is selected in the group consisting of N, P, C, O and/or S-donors; R being an organic substituent, typically selected from the group consisting of i Pr, t Bu, Ph, Et, Me, Bn, H.
摘要:
The present invention relates to novel Ruthenium complexes of formulae A1-A4 and their use, inter alia, for (1) dehydrogenative coupling of alcohols to esters; (2) hydrogenation of esters to alcohols (including hydrogenation of cyclic esters (lactones) or cyclic di-esters (di-lactones), or polyesters); (3) preparing amides from alcohols and amines—(including the preparation of polyamides (e.g., polypeptides) by reacting dialcohols and diamines and/or polymerization of amino alcohols and/or forming cyclic dipeptides from p-aminoalcohols; (4) hydrogenation of amides (including cyclic dipeptides, polypeptides and polyamides) to alcohols and amines; (5) hydrogenation of organic carbonates (including polycarbonates) to alcohols or hydrogenation of carbamates (including polycarbamates) or urea derivatives to alcohols and amines; (6) dehydrogenation of secondary alcohols to ketones; (7) amidation of esters (i.e., synthesis of amides from esters and amines); (8) acylation of alcohols using esters; (9) coupling of alcohols with water and a base to form carboxylic acids; and (10) preparation of amino acids or their salts by coupling of amino alcohols with water and a base. The present, invention further relates to the use of certain known Ruthenium complexes for the preparation of amino acids or their salts from amino alcohols.
摘要:
The invention relates to bifunctional conjugates comprising a receptor ligand moiety and a metal binding moiety and complexes thereof with paramagnetic lanthanide or transition metals, and to the use of the metal complexes as contrast agents in magnetic resonance imaging (MRI) of tumors and other abnormalities.
摘要:
The present invention relates to novel manganese complexes and their use, inter alia , for homogeneous catalysis in (1) the preparation of imine by dehydrogenative coupling of an alcohol and amine; (2) C-C coupling in Michael addition reaction using nitriles as Michael donors; (3) dehydrogenative coupling of alcohols to give esters and hydrogen gas (4) hydrogenation of esters to form alcohols (including hydrogenation of cyclic esters (lactones) or cyclic di-esters (di-lactones), or polyesters); (5) hydrogenation of amides (including cyclic dipeptides, lactams, diamide, polypeptides and polyamides) to alcohols and amines (or diamine); (6) hydrogenation of organic carbonates (including polycarbonates) to alcohols or hydrogenation of carbamates (including polycarbamates) or urea derivatives to alcohols and amines; (7) dehydrogenation of secondary alcohols to ketones; (8) amidation of esters (i.e., synthesis of amides from esters and amines); (9) acylation of alcohols using esters; (10) coupling of alcohols with water and a base to form carboxylic acids; and (11) preparation of amino acids or their salts by coupling of amino alcohols with water and a base. (12) preparation of amides (including formamides, cyclic dipeptides, diamide, lactams, polypeptides and polyamides) by dehydrogenative coupling of alcohols and amines; (13) preparation of imides from diols.