Abstract:
Une chambre (10) d'échantillons gazeux utilisée dans un analyseur de gaz comprend un tube creux allongé (21) présentant une surface à réflexion spéculaire et orientée vers l'intérieur (22), qui permet au tube de fonctionner également comme un conduit léger permettant de conduire un rayonnement à partir d'une source (12) vers un détecteur (14) à travers l'échantillon gazeux. Un certain nombre d'ouvertures (24) dans la paroi du tube creux allongé permettent à l'échantillon gazeux d'entrer et de sortir. Des particules de fumée et de poussière supérieures à 0,1 micron sont maintenues hors de la chambre par l'intermédiaire d'une membrane semi-perméable (28) recouvrant les ouvertures du tube creux. On prévient la condensation des constituants du gaz en chauffant électriquement la chambre d'échantillon jusqu'à une température supérieure à la température au point de rosée du constituant en question. Selon un mode de réalisation, plusieurs détecteurs (40, 42, 44) sont espacés autour du pourtour du tube creux allongé, à proximité d'une de ses extrémités. Selon un autre mode de réalisation, plusieurs détecteurs sont espacés sur la longueur du tube.
Abstract:
The invention provides for an optical measuring instrument and measuring device. The optical measuring instrument for investigating a specimen contained in a sample comprises at least one source for providing at least one electromagnetic beam intended to irradiate the sample and to interact with the specimen within the sample, at least one sensor for detecting an output of the interaction between the specimen and the electromagnetic beam, an integrally formed mechanical bench for the optical and electronic components, a sample holder for holding the sample, wherein the at least one source, the at least one sensor, and the mechanical bench are integrated in one monolithic optoelectronic module and the sample holder can be connected to this module.
Abstract:
A gas sample chamber (10) for use in a gas analyzer consists of an elongated hollow tube (21) having an inwardly-facing specularly-reflective surface (22) that permits the tube to function also as a light pipe for conducting radiation from a source (20) to a detector (16) through the sample gas. A number of apertures (24) in the wall of the elongated hollow tube permit the sample gas to enter and exit. Particles of smoke and dust of a size greater than 0.1 micron are kept out of the chamber by use of a semi-permeable membrane (28) that spans the apertures in the hollow tube. Condensation of the sample gas components is prevented by heating the sample chamber electrically to a temperature above the dew point of the component of concern.
Abstract:
On décrit une chambre d'échantillonnage (10) de gaz conçue pour être utilisée dans un analyseur de gaz et qui se compose d'un tube creux allongé (21) pourvu d'une surface interne à réflexion spéculaire (22) ce qui permet au tube de fonctionner comme un guide de la lumière afin de transmettre par conduction un rayonnement à partir d'une source (20) vers un détecteur (16) en traversant le gaz de l'échantillon. Un nombre d'ouvertures (24) dans la paroi du tube creux allongé permet au gaz de l'échantillon d'entrer et sortir. Des particules de fumée et de poussière de taille supérieure à 0,1 micron sont maintenues à l'extérieur de la chambre à l'aide d'une membrane semi-perméable (28) qui couvre les ouvertures du tube creux. On évite la condensation des constituants du gaz de l'échantillon en chauffant la chambre d'échantillonnage électriquement à une température supérieure au point de rosée du constituant en question.
Abstract:
The improved sample chamber includes an elongated hollow tube (12) closed at one end (14) and having specularly-reflective inwardly facing surfaces (16). A source (26) of radiation and a detector (28) of radiation are mounted side by side in the open end of the hollow tube, both facing the closed end. A plurality of filtering apertures (20) are formed in the tube (12), and each aperture is covered by a sheet (22) of a semipermeable membrane that serves to prevent airborne particles larger than a predetermined size from entering the chamber while not interfering with the free diffusion of the gas to be measured into and out of the chamber. The use of an elongated hollow tube that is closed at one end results in no loss in the efficiency with which the radiation is conducted from the source to the detector while decreasing the external length of the chamber by 50 percent.
Abstract:
The improved sample chamber includes an elongated hollow tube (12) closed at one end (14) and having specularly-reflective inwardly facing surfaces (16). A source (26) of radiation and a detector (28) of radiation are mounted side by side in the open end of the hollow tube, both facing the closed end. A plurality of filtering apertures (20) are formed in the tube (12), and each aperture is covered by a sheet (22) of a semipermeable membrane that serves to prevent airborne particles larger than a predetermined size from entering the chamber while not interfering with the free diffusion of the gas to be measured into and out of the chamber. The use of an elongated hollow tube that is closed at one end results in no loss in the efficiency with which the radiation is conducted from the source to the detector while decreasing the external length of the chamber by 50 percent.
Abstract:
A non-dispersive infrared (NDIR) multi-gas analyzer (405) has an optical element (950) that is positioned with respect to the axis of incident IR radiation such that it passes nearly all of the IR energy within a narrow band pass to one detector (540) and reflects nearly all of the IR energy outside the narrow band pass to another detector (535). Thus, the optical element (950) simultaneously functions both as a narrow band pass filter and a beam splitter, which transmits nearly all the IR radiation within a band pass and reflects nearly all the IR radiation outside the band pass. Additionally, the separation of the incoming energy can be achieved without an extended roll off. This allows using a reference transmission band that is very close to the absorption band of the gases of interest. It more specifically allows using a reference transmission band that is located between the absorption bands for hydrocarbons and carbon dioxide in an infrared analyzer that uses beam splitters.
Abstract:
A non-dispersive infrared (NDIR) multi-gas analyzer (405) has an optical element (950) that is positioned with respect to the axis of incident IR radiation such that it passes nearly all of the IR energy within a narrow band pass to one detector (540) and reflects nearly all of the IR energy outside the narrow band pass to another detector (535). Thus, the optical element (950) simultaneously functions both as a narrow band pass filter and a beam splitter, which transmits nearly all the IR radiation within a band pass and reflects nearly all the IR radiation outside the band pass. Additionally, the separation of the incoming energy can be achieved without an extended roll off. This allows using a reference transmission band that is very close to the absorption band of the gases of interest. It more specifically allows using a reference transmission band that is located between the absorption bands for hydrocarbons and carbon dioxide in an infrared analyzer that uses beam splitters.