摘要:
The invention relates to a Coriolis gyro having an arrangement which comprises a substrate (5, 22, 24, 26), at least two individual structures (61, 62, 63, 64, 500, 600, 700, 800) and spring elements (for example 1, 2, 3, 21, 23, 25), with the spring elements (for example 1, 2, 3, 21, 23, 25) coupling the individual structures (61, 62, 63, 64, 500, 600, 700, 800) to the substrate (5, 22, 24, 26) and to one another, having force transmitters (for example 514, 614, 714, 814) and having taps (for example 534, 634, 734, 834), wherein the arrangement has at least one excitation mode (7) which can be excited by the force transmitters (for example 514, 614, 714, 814) and at least one detection mode (8) which can be measured by the taps (for example 534, 634, 734, 834), wherein the excitation mode (7) and the detection mode (8) are closed off, as a result of which no disturbance excitations of the excitation mode and of the detection mode can be caused by linear accelerations and/or vibrations if there is no need to take account of manufacturing tolerances.
摘要:
Method for determining states of a system using an estimation filter, in which first state values are determined by calculating a mean value of a probability distribution for the states, a deviation probability of the first state values deviating from the actual states of the system is calculated, and the states of the system are measured as state data. If the deviation probability is greater than a limit value, then the first state values are corrected using the state data.
摘要:
The invention relates to an acceleration sensor (400) comprising an excitation mass (420) having excitation electrodes (430), which excitation mass is movably mounted over a substrate (410) along a movement axis (x) and comprising detection electrodes (440) which are permanently connected to the substrate (410) and allocated to the excitation electrodes (430). A first group of pairings (450) of excitation electrode (430) and allocated detection electrodes (440) is suitable for deflecting the excitation mass (420) along the movement axis (x) in a first direction (460). A second group of pairings (450) of excitation electrodes (430) and allocated detection electrodes (440) is suitable for deflecting the excitation mass (420) along the movement axis (x) in a second direction (465), which is opposite the first direction (460). The number of pairings (450) in the first group is equal to the number of pairings (450) in the second group. The averaged distance between excitation electrodes (430) and detection electrodes (440) of the pairings (450) of the first group corresponds to the averaged distance between excitation electrodes (430) and detection electrodes (440) of the pairings (450) of the second group.