Abstract:
This invention solves a problem of registration and improves signal-to-noise ratio (SNR) when using division-by-focal-plane array to produce multiple polarization images. This is achieved by processing a sequence of angular-position-dithered frames to generate a high-definition, Nyquist-sampled, integrated image for each of the polarizations. The integration method transforms individually under-sampled, high-resolution image frames into resultant high-resolution frames that meet the Nyquist sampling criterion. During the resampling transformation, each polarization or waveband is resampled to produce precise registration to the other polarizations, since registration offsets are fixed and defined by the arrangement of the polarized pixels in the focal-plane-array. In the most straight-forward implementation, these offsets would be integer pixel shifts in X and Y.
Abstract:
The present invention concerns a system and a process for analysing a sample (6) comprising an excitation section (1) and an analyse section (7), said excitation section (1) including a light source (2) emitting an incident measurement luminous beam (3), a polarisation state generator (PSG) (4), first optical means (5), and said analyse section (7) comprising a polarisation state analyser (PSA) (8), a detection system (10) and second optical means (9). According to the invention, the excitation section (1) comprises an illumination source (12) emitting an incident visualization luminous beam (22), superposition optical means (13) enabling to the incident visualization luminous beam (22) to be send onto the sample surface (21) through an optical path which is identical to the optical path of the incident measurement luminous beam (3) and the analyse section (7) comprises separation optical means (14) enabling to transmit a part of the reflected or transmitted visualization luminous beam (23) and a part of the reflected or transmitted measurement luminous beam towards a visualization direction (25).
Abstract:
Apparatus for measuring polarization mode dispersion (PMD) of adevice, e. g. a waveguide, comprises a broadband light source (10,12) for passing polarized broadband light through the device (14), an interferometer (20) for dividing and recombining light that has passed through the device to form interferograms, a polarization separator (30) for receiving the light from the interferometer and separating such received light along first and second orthogonalFebruary 25, 2003February 25, 2003 polarization states, detectors (32x,32y) for converting the first and second orthogonal polarization states, respectively, into corresponding first and second electrical signals (Px(τ),Py(τ)), and a processor (36) for computing the modulus of the difference and such, respectively, of the first and second electrical signals to produce a cross-correlation envelope (EC(τ)) and an auto-correlation envelope (Ec(τ)), and determining the polarization mode dispersion according to the expression PMD = where and τ is the delay difference between the paths of the interferometer.
Abstract:
A multi-energy polarization imaging method consisting of a multi-fusion, dual-rotating retarder / multiple-energy complete Mueller matrix-based polarimeter and dual-energy capabilities The system includes a light source (14) for illuminating a target (18) with a first quantity of light having a first wavelength and a second quantity of light having a second wavelength, the first and second wavelength being different. A polarization-state generator (22) generates a polarization state for each of the first and second quantities of light, and includes a first polarizer (26) through which the first and second quantities of light are transmitted before entering a first waveplate (32). A polarization-state receiver (44) evaluates a resulting polarization state of the first and second quantities of light following illumination of the target (18), the polarization-state receiver (44) including a second waveplate (48) through which the first and second quantities of light are transmitted before entering a second polarizer (51). An optical image-capture device captures a first image of the target illuminated by the first quantity of light and a second image of the target illuminated by the second quantity of light. A processing unit assigns a weighting factor to at least one of the first and second images and evaluates a weighted difference between the first and second images to generate a multi-energy image of the target (18).
Abstract:
The degree of polarization of an optical signal is measured by a polarimeter and used for providing a feedback signal to adjust adaptive optics of a polarization mode dispersion compensator. The polarization properties of the polarimeter are determined with high accuracy to match the polarimeter through calibration and used to produce the feedback signal.
Abstract:
In the channeled spectroscopic polarimetry, a measurement error of a parameter showing a spectropolarization characteristic of a sample is effectively removed, the error being generated by various variations in retardation of a retarder depending upon the state of the sample. With attention being focused on that the retardation of the retarder may be kept constant by stabilization of an incident direction of light that transmits through the retarder, the retarder (R1, R2, 117, 118, 207, 208) was arranged on the light source (7, 202) side with respect to the sample (D, 50,400) so as to effectively remove an influence relative to a measurement error, such as variations in direction of a light ray due to the sample (D, 50, 400).
Abstract:
An exposure apparatus includes an illumination optical (IO) system for illuminating the reticle (MK) using the ultraviolet light from the light source, and a polarization measuring unit (1) measuring the polarization state of the ultraviolet light, the polarization measuring unit including an optical unit for providing at least three different phase differences to the ultraviolet light that has passed at least part of the illumination optical system, a polarization element for providing a different transmittance in accordance with a polarization state of the ultraviolet light that has passed the optical unit, and an image pickup device (22) for detecting a light intensity of the ultraviolet light that has passed the polarization element, the polarization measuring unit measuring the polarization state of the ultraviolet light that has passed the at least part of the illumination optical system based on a detection result of the image pickup device.
Abstract:
A polarization state measuring apparatus of the present invention branches an input signal light into a plurality of signal lights by optical couplers, gives polarization and phase shift which are different from each other, to the signal lights by a plurality of optical elements arranged on optical branch paths, detects the power of each of the signal lights by the corresponding light receiving elements, and after adjusting at least differences in the optical branch paths, processes electrical signals output from the light receiving elements by operating means, to acquire information related to a polarization state of the input signal light. As a result, it is possible to provide a small size polarization state measuring apparatus which can correct differences in arrival times of the signal lights to the light receiving elements, which occur due to differences in the optical path lengths of the plurality of optical branch paths, to thereby measure the polarization state of the input signal light with high accuracy.
Abstract:
A first optical signal with a first polarization state is received by a polarization conversion unit. From this first optical signal, a set of n derived optical signals with n different well-defined polarization states i, i = 1, ..., n, is generated, whereby n is a natural number greater than one. Said n different well-defined polarization states are chosen such that polarization dependent measurement errors of the n derived optical signals cancel each other when averaged irrespective of the first optical signal's polarization state. Therefore, polarization dependent measurement errors can be reduced or even eliminated.