Abstract:
A method of managing fault recovery in a trunk-branched OADM network may include determining that an optical power level over data channels of a first communications link between a first and a second terminal of the branched optical network exceeds an optical power limit. The method may further include increasing optical power sent over spare channels of the first communications link to a first level at which the optical power level over the data channels decreases to a second level below the optical power limit.
Abstract:
A device is provided that includes a first platform having a first side, and a second platform having a second side positioned within a predetermined distance to the first side. The device also includes an actuator configured to cause a relative rotation between the first platform and the second platform such that the first side of the first platform remains within the predetermined distance to the second side of the second platform. The device also includes a probe mounted to the first platform, and a plurality of probes mounted to the second platform. The device also includes a signal conditioner coupled to the plurality of probes. The signal conditioner may select one of the plurality of probes based on an orientation of the first platform relative to the second platform. The signal conditioner may then to use the selected probe for wireless communication with the probe on the first platform.
Abstract:
A system is provided that includes a gateway node and terminal node. The gateway node includes an actuator configured to produce a light beam for propagation through a fluid, and a sensor configured to detect a reflection of the light beam. The terminal node is disposed within the fluid and includes an energy source and a photovoltaic layer adjacent to a reflective layer. The photovoltaic layer is switchably controlled between two modes, to convey a data stream associated with the reflected light beam to the sensor of the gateway node, the two modes including: a transmission mode wherein the light beam is transmitted through the photovoltaic layer and reflected by the adjacent reflective layer to the sensor of the gateway node, and a recharging mode wherein the photovoltaic layer is configured to capture photonic energy from the light beam for storage in the energy source.
Abstract:
[Object] To provide a communication device, an information processing device, and a communication method. [Solution] A communication device including: a detector configured to detect an optical signal and convert the optical signal to an electric signal; a data processing unit configured to process the electric signal converted by the detector to acquire data; and a controller configured to control an operating state including a standby state in which the data processing unit is deactivated to reduce power consumption and an active state in which the data processing unit is capable of executing acquisition of the data on a basis of the optical signal detected by the detector, in which the detector detects the optical signal in the standby state.
Abstract:
There is provided an optical transmitting and receiving unit that can make an optical connecting portion waterproof even when an endoscope or the like is, for example, damaged by use. An optical transmitting unit 100 includes: an optical transmitting and receiving module 20; an optical connector 30; and a tubular waterproof cap 10 that has a bottom, with one end open and the other end closed, and caps the optical connector 30 to seal an optical connecting portion between the optical connector 30 and the optical transmitting and receiving module 20 in a watertight manner. A metal case 23 has a plurality of step portions 23a to 23g with different outside diameters, and the step portion 23a closest to the optical connecting portion contacts an inner surface of the waterproof cap 10 along an entire circumference thereof.
Abstract:
Messages on controller area network (CAN) buses are communicated over subsea links. Messages are sent as electrical or optical signals. The present invention provides a subsea CAN BUS electronic distribution unit (EDU) for transmitting, receiving, converting, and routing electrical or optical signals sent over a subsea CAN BUS network. The CAN BUS EDU of the present invention is contained within a single housing and combines the functions of transmitting, receiving, converting, and routing electrical or optical signals sent over a subsea CAN BUS network that would typically be handled by multiple devices.
Abstract:
An arrangement comprises: - a plurality of diver propulsion vehicles (1), each configured for propelling at least one diver, wherein each diver propulsion vehicle (1) comprises a wireless communication interface (9, 10, 13) configured for providing a wireless communication, - a support (30) for mechanically coupling the plurality of diver propulsion vehicles (1), wherein the support (30) is configured for mechanically coupling the plurality of diver propulsion vehicles (1) side-by-side or longitudinally via the support (30).
Abstract:
[Problem] To provide an optical transmission/reception device, an optical communication system, an optical communication method, and a program which are capable of securing the confidentiality of information included in an optical signal even when the optical signal is transferred to a device that is not an original transmission destination device. [Solution] This optical transmission/reception device is provided with: a wave separation unit for receiving a wavelength-multiplexed optical signal and separating the same into a plurality of optical signals; a plurality of reception units for receiving each of the plurality of optical signals separated by the wave separation unit; a plurality of output units for outputting optical signals differing in wavelength from each other; a control unit for requesting, in response to the inclusion in the received wavelength-multiplexed optical signal of an optical signal to which a prescribed process has been applied, that a prescribed change be applied to the optical signal outputted by at least one of the plurality of output units; and a wave combining unit for combining the plurality of optical signals outputted from the plurality of output units and outputting the combined signal.
Abstract:
Example management closures (110) enable incoming optical and/or electrical signals to be connected to one or more subscribers (109) via an electrical distribution cable (102). Termination connections within the management closure (110) are connected to active electronic equipment (131) for modifying and/or enhancing the incoming signals. However, the connections between the central office (101), the active electronic equipment (131), and a subscriber (109) need not be made until the subscriber requests a service upgrade. Accordingly, the closure (110) allows for simple and low cost installation of the closure (110) before upgraded service is needed.
Abstract:
Powering an active/splitter and providing information to ONUs to cause adjustments to ONU operating wavelengths. An ONU may identify the port of a splitter to which the ONU is connected in order to make wavelength adjustments. Various techniques enable the ONU to identify from which port the ONU is receiving signals, such as a splitter that splits signals to ONUs in a cable network and signals to one or more ONUs the port to which it is connected. The splitter may lack electrical power and may perform the signal function by harvesting optical power from optical power provided to the splitter. In this manner, an active splitter may behave passively with respect to powering components in the absence of electrical power.