Abstract:
Subsea fiber optical termination module for terminating at least one fiber optical cable, wherein the subsea fiber optical termination module is configured for deployment in a subsea environment where it is exposed to a high pressure prevailing in the subsea environment. The subsea fiber optical termination module comprises at least one fiber optical termination unit for terminating a fiber optical cable, wherein the fiber optical cable includes a plurality of optical fibers. Further, the subsea fiber optical termination module comprises one or more optical connectors and at least one connecting tube, wherein each connecting tube contains one or more of the plurality of optical fibers and connects one or more of the plurality of optical fibers from the highpressure section to the at least one optical connector. The subsea fiber optical termination module includes a support structure comprising at least one recess, wherein the at least one recess accommodates the at least one optical connector, and at least one support element is configured to connect the at least one fiber optical termination unit to the support structure.
Abstract:
Methods and systems for a distributed optoelectronic receiver are disclosed and may include an optoelectronic receiver having a grating coupler, a splitter, a plurality of photodiodes, and a plurality of transimpedance amplifiers (TIAs). The receiver receives a modulated optical signal utilizing the grating coupler, splits the received signal into a plurality of optical signals, generates a plurality of electrical signals from the plurality of optical signals utilizing the plurality of photodiodes, communicates the plurality of electrical signals to the plurality of TIAs, amplifies the plurality of electrical signals utilizing the plurality of TIAs and generates an output electrical signal from coupled outputs of the plurality of TIAs. Each TIA may be configured to amplify signals in a different frequency range. One of the plurality of electrical signals may be DC coupled to a low frequency TIA of the plurality of TIAs.
Abstract:
Techniques are disclosed for enhancing indoor navigation using light-based communication (LCom). In some embodiments, an LCom-enabled luminaire configured as described herein may include or have access to a sensor configured to detect a hazardous condition. In response to detection of a hazard, the LCom-enabled luminaire may adjust its light output, transmit an LCom signal, or both, in accordance with some embodiments. A given LCom signal may include data that may be utilized by a recipient computing device, for example, in providing emergency evacuation routing or other indoor navigation with hazard avoidance, emergency assistance, or both. In a network of such luminaires, data distribution via inter-luminaire communication may be provided, in accordance with some embodiments, via an optical interface or other wired or wireless communication means. In some cases, the network may include a luminaire that is not LCom-enabled yet still configured for inter-luminaire communication.
Abstract:
Methods and systems for synchronizing clocks used in underwater devices is described. All clocks have some drift due to frequency accuracy and this disclosure provides a method for periodically synchronizing clocks to an accurate master clock to remove long term drift. A synchronization device can use an accurate clock and hardware to transmit both a sound wave and light pulse at the same point in time. Remote slave clocks can detect the light first, and later the sound, allowing them to calculate the distance the pulse had to travel. The clocks can then synchronize their time to the master clock canceling out any drift. The synchronization device can be packaged in a waterproof housing and can be moved around on a periodic basis between the clock on an underwater robot or any other means.
Abstract:
A repeater includes: a pressure-tight casing to be arranged on seabed or in sea; and a feedthrough having a plurality of lead sections each configured to connect a circuit housed in the pressure-tight casing with a cable outside the pressure-tight casing, wherein the plurality of lead sections include at least a power wire and an electric signal wire, and at least two of the plurality of lead sections have a difference in length from each other.
Abstract:
Enhancements in optical beam propagation performance can be realized through the utilization of ultra-short pulse laser (USPL) sources for laser transmit platforms, which are can be used throughout the telecommunication network infrastructure fabric. One or more of the described and illustrated features of USPL free space-optical (USPL-FSO) laser communications can be used in improving optical propagation through the atmosphere, for example by mitigating optical attenuation and scintillation effects, thereby enhancing effective system availability as well as link budget considerations, as evidenced through experimental studies and theoretical calculations between USPL and fog related atmospheric events.
Abstract:
An intra-body communication system for monitoring physiological changes in a patient is provided. The system can include a first device implanted into a patient's body; a second device spaced apart from the first device; and a receiver for detecting and/or decoding the signals to monitor physiological changes in the patient. The first device and second device are capable of engaging in a two-way communication through transmission of one or more signals through at least a portion of the patient's body between the first device and the second device. In one embodiment, the signal may be an optical signal.
Abstract:
A transmitter includes an ultraviolet (UV) encoder conversion block that receives network data from a network interface to generate a conversion output. The UV conversion block converts the network data to a modulated signal that drives a plurality of multi-spectrum sources to generate the conversion output. A wave front optical component receives the conversion output from the UV conversion block and generates an output beam. The wave front optical component employs refraction compensation to mitigate absorption and scattering of the output beam in a liquid medium. An isotropic transmitter cluster transmits the output beam received from the wave front optical component as photon energy in the liquid medium. The isotropic transmitter cluster includes at least two transmitting nodes to facilitate transmission of the photon energy in a plurality of directions in the liquid medium.