Abstract:
The present invention relates to a continuous process for the production of polymeric coupling products by using a reactor assembly which is equipped with two or more reaction cells. The educt fluid is pumped through the reaction cells and thoroughly mixed therein by means of agitators. Preferably the process according to the invention is used for the preparation of coupling products which show at least partially precipitation and/or gelation effects during the performance of the synthesis. The precipitation and/or gelation effects are associated with and increase of the viscosity of the reaction system under reaction conditions. The products which are obtained by the process according to the invention have increased molecular weight and low polydispersity over similar products which were obtained in batch experiments.
Abstract:
A process for preparing a regioregular homopolymer or copolymer of 3-substituted thiophene, 3-substituted selenophene, 3-substituted thiazol or 3-substituted selenazol by a) reacting a 3-substituted 2,5-dihalothiophene, 2,5-dihaloselenophene, 2,5-dihalothiazol or 2,5-dihaloselenazol with reactive zinc, magnesium and/or an organomagnesium halide to give an organozinc or organomagnesium intermediate containing one halozinc or one halomagnesium group, b) bringing the organozinc or the organomagnesium intermediate into contact with a Ni(II), Ni(O), Pd(II) or Pd(0) catalyst to initiate the polymerization reaction, and c) polymerizing the organozinc or the organomagnesium intermediate to give a regioregular head-to-tail homopolymer or copolymer of 3-substituted thiophene, 3-substituted selenophene, 3-substituted thiazol or 3-substituted selenazol characterized in that the polymerization reaction is carried out at a temperature rising from a lower temperature T 1 to a higher temperature T 2 during a time t 1 , wherein T 1 is in the range of from - 40 to 5 °C and T 2 is in the range of from -20 to 40 °C, wherein T 2 - T 1 is at least 10 °C and the average rate of increase (T 2 -T 1 )/t 1 is in the range of from 0,05 °C/min to 1 °C/min.
Abstract:
The present invention relates to an electronic device comprising at least one dielectric layer, said dielectric layer comprising a crosslinked organic compound based on at least one compound which is radically crosslinkable and a method of making the electronic device.
Abstract:
Dithienobenzodithiophenes of general formula (I) in which R1 to R6 are each independently selected from a) H, b) halogen, c) —CN, d) —NO2, e) —OH, f) a C1-20 alkyl group, g) a C2-20 alkenyl group, h) a C2-20 alkynyl group, i) a C1-20 alkoxy group, j) a C1-20 alkylthio group, k) a C1-20 haloalkyl group, I) a —Y—C3-10 cycloalkyl group, m) a —Y—C6-14 aryl group, n) a —Y-3-12 membered cyclo-heteroalkyl group, or o) a —Y-5-14 membered heteroaryl group, wherein each of the C1-20 alkyl group, the C2-20 alkenyl group, the C2-20 alkynyl group, the C3-10 cycloalkyl group, the C6-14 aryl group, the 3-12 membered cyc-loheteroalkyl group, and the 5-14 membered heteroaryl group is optionally substituted with 1-4 R7 groups, wherein R1 and R3 and R2 and R4 may also together form an aliphatic cyclic moiety, Y is independently selected from divalent a C1-6 alkyl group, a divalent C1-6 haloalkyl group, or a covalent bond; and m is independently selected from 0, 1, or 2. The invention also relates to the use of the dithienobenzodithiophenes according to any of claims 1 to 4 as semiconductors or charge transport materials, as thin-film transistors (TFTs), or in semiconductor components for organic light-emitting diodes (OLEDs), for photovoltaic components or in sensors, as an electrode material in batteries, as optical waveguides or for electrophotography applications.
Abstract:
A benzothiadiazol-cyclopentadithiophene copolymer comprising as repeating unit the group of the formula (I) wherein R is n-hexadecyl or 3,7-dimethyloctyl, and having a number average molecular weight Mn in the range of from 30 to 70 kg/mol is disclosed. The invention also relates to the use of the copolymers as semiconductors or charge transport materials, as thin-film transistors (TFTs), or in semiconductor components for organic light-emitting diodes (OLEDs), for photovoltaic components or in sensors, as an electrode material in batteries, as optical waveguides or for electrophotography applications.
Abstract:
The present invention relates to semiconducting compounds, materials prepared from such compounds, methods of preparing such compounds and semiconductor materials, as well as various compositions, composites, and devices that incorporate the compounds and semiconductor materials. The semiconducting compounds can have higher electron-transport efficiency and higher solubility in common solvents compared to related representative compounds.
Abstract:
Disclosed are new semiconductor materials prepared from naphthalene-imide copolymers. Such polymers can exhibit desirable electronic properties and can possess processing advantages including solution-processability and/or good stability at ambient conditions.
Abstract:
Disclosed are new semiconductor materials prepared from rylene-(π-acceptor) copolymers. Such copolymers can exhibit high n-type carrier mobility and/or good current modulation characteristics. In addition, the polymers of the present teachings can possess certain processing advantages such as solution-processability and/or good stability at ambient conditions.