摘要:
The present invention refers to a method and device for preparing propylene and C4 hydrocarbons from oxygen-containing compounds. The main characteristics of the method lie in that: returning 70 wt.% or more of the light fractions in the generated product to a dense phase zone of a fast fluidized-bed reactor from a reactor feed distributor at the bottom-most of the fast fluidized-bed reactor to react ethylene and the oxygen-containing compounds to perform an alkylation reaction in presence of a catalyst to produce products of propylene and the like, and circulating 80 wt.% or more of the hydrocarbons with 5 or more carbons into a catalytic cracking lift pipe to perform a cracking reaction to generate a product containing propylene and C4 hydrocarbons, which is subsequently fed into a dilute phase zone of the fast fluidized-bed reactor. The method and device of the present invention improve the reaction rate of ethylene alkylation, and the unit volume production capacity of reactor is high.
摘要:
The present invention involves a technology for synthesis of aromatic hydrocarbons from synthesis gas, and relates to a catalyst and a method for synthesis of aromatic hydrocarbons through direct conversion of synthesis gas. The method uses synthesis gas as the feeding, which is operated in a fixed bed or a moving bed reactor. The catalyst is a composite catalyst with components A and B and formed by compounding Catalyst Component A and Catalyst Component B in a mechanical mixing mode, wherein the active ingredient of the Catalyst Component A is active metal oxides; and the Catalyst Component B is one or both of ZSM-5 zeolite and metal modified ZSM-5; the pressure of the synthesis gas is 0.1-6 MPa; the reaction temperature is 300-600 °C; and the space velocity is 500-8000 h -1 . The reaction process has a high product yield and selectivity, with the selectivity of aromatics reaching 50-85%, while the selectivity of the methane byproduct is less than 15%. The present invention has strong potentials for industrial applications.
摘要:
This present invention relates to a reaction device for preparing light olefins from methanol and/or dimethyl ether, and more specifically relates to a reaction device for preparing light olefins from methanol and/or dimethyl ether, which mainly comprises a dense phase fluidized bed reactor (2), a cyclone separator (3), a stripper (5), a lift pipe (7), a dense phase fluidized bed regenerator (10), a cyclone separator (11), a stripper (13), and a lift pipe (15), wherein the dense phase fluidized bed reactor (2) is separated into n (n‰¥2) secondary reaction zones by a material flow controller (17), and the dense phase fluidized bed regenerator (10) is separated into m (m‰¥2) secondary regeneration zones by the material flow controller (17). The use of the reaction device of this present invention solves the problems in the prior art that the distribution of carbon deposition on a catalyst is non-uniform and the selectivity for the light olefins is relatively low.
摘要:
A solvothermal synthesis process of the SAPO molecular sieves and catalysts prepared thereby are provided. The synthesis process comprises the following steps: a) an organic amine, an aluminum source, a phosphorus source, a silicon source, and water are mixed in a molar ratio of 6-30 : 1 : 0.5-5 : 0.01-1.0 : 0.1-15, to obtain an initial mixture for preparing the SAPO molecular sieves, wherein the molar ratio of water to the organic amine is less than 2.0; b) the initial mixture obtained in the step a) is maintained at 30-60 °C and aged with stirring for not more than 24 hours, to obtain an initial gel; c) the initial gel obtain in the step b) is crystallized at 150-250 °C for 0.5-15 days. The SAPO molecular sieves prepared thereby are used, after being calcined at 400 - 700 °C in air, as catalysts for acid-catalyzed reactions or for conversion reactions of oxygen-containing compounds to olefins.
摘要:
The present invention discloses catalyst and method for producing light olefins directly from synthesis gas by a one-step process, and particularly relates to method and catalyst for directly converting synthesis gas into light olefins by a one-step process. The provided catalysts are composite materials formed of multicomponent metal oxide composites and inorganic solid acids with hierarchical pore structures. The inorganic solid acids have a hierarchical pore structure having micropores, mesopores and macropores. The metal composites can be mixed with or dispersed on surfaces or in pore channels of the inorganic solid acid and can catalyze the synthesis gas conversion to a C 2 -C 4 light hydrocarbon product containing two to four carbon atoms. The single pass conversion of CO is 10%-60%. The selectivity of light hydrocarbon in all hydrocarbon products can be up to 60%-95%, wherein the selectivity of light olefins (C 2 = -C 4 = ) is 50%-85%.
摘要:
The present invention relates to a method for efficient conversion of carbohydrates into 5-hydroxymethylfurfural (HMF) in the presence of tantalum-containing solid acid, which shows good activity and high selectivity for HMF preparation from saccharides. The catalyst is stable in aqueous system which makes it as an ideal catalyst for HMF production. High HMF yield was obtained even in mild condition. The catalysts of the invention are advantageous in that they are environment-friendly, easy separation and recovery, can be re-used in subsequent reactions, do not corrode reaction reactors. These features make the catalyst as an ideal catalyst for HMF preparation and have strong industrial application significance.
摘要:
This application consists of a method for the synthesis of a type of FER/MOR composite molecular sieve. That method consisting of mixing FER seed crystals, MOR seed crystals, a silicon source, water and an acid or alkali, thus yielding a reaction mixture; by adjusting the proportions of the seed crystals added, the silicon-aluminium proportion, acidity/alkalinity and other reaction conditions, it is possible to obtain a dual phase composite molecular sieve within which the proportions of the crystal phases may be adjusted. In the synthesis process to which the method of this application relates, there is no need to add any organic template, thus reducing the cost of the reaction, in addition to reducing likely environmental pollution, thus having major potential applications.